
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Advances in Programming Languages
APL5: Further language concurrency mechanisms

David Aspinall
(including slides by Ian Stark)

School of Informatics
The University of Edinburgh

Tuesday 5th October 2010
Semester 1 Week 3

http://www.ed.ac.uk
http://hompeages.inf.ed.ac.uk/da
http://www.inf.ed.ac.uk/~stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk


Programming-Language Techniques for Concurrency

This is the third in a block of lectures presenting some
programming-language techniques for managing concurrency.

Introduction, basic Java concurrency

Concurrency abstractions in Java

Concurrency in some other languages



Outline

1 Concurrency mechanisms

2 Actors

3 Software Transactional Memory

4 Summary



Concurrency mechanisms
There is a large design space for concurrent language mechanisms. Two
requirements are separation, to prevent inconsistent access to shared
resources, and co-operation for communication between tasks.

Various language paradigms have been followed, e.g.:

locks and conditions: tasks share memory and exclude and signal one
another using shared memory (e.g., Java);

synchronous message passing: tasks share communication channels and
use rendezvous to communicate (e.g., Ada, CML, Go);

asynchronous message passing: a task offers a mail box which receives
messages (e.g. Erlang, Scala Actors);

lock-free algorithms or transactional memory: tasks share memory but
detect and repair conflicts (e.g., libraries in Haskell, Clojure)

Language designs have also been influenced by mathematical models used
to capture and analyse the essence of concurrent systems, for example,
CSP, π-calculus, the join calculus, and the ambient calculus.



Concurrency mechanisms
There is a large design space for concurrent language mechanisms. Two
requirements are separation, to prevent inconsistent access to shared
resources, and co-operation for communication between tasks.

Various language paradigms have been followed, e.g.:

locks and conditions: tasks share memory and exclude and signal one
another using shared memory (e.g., Java);

synchronous message passing: tasks share communication channels and
use rendezvous to communicate (e.g., Ada, CML, Go);

asynchronous message passing: a task offers a mail box which receives
messages (e.g. Erlang, Scala Actors);

lock-free algorithms or transactional memory: tasks share memory but
detect and repair conflicts (e.g., libraries in Haskell, Clojure)

Language designs have also been influenced by mathematical models used
to capture and analyse the essence of concurrent systems, for example,
CSP, π-calculus, the join calculus, and the ambient calculus.



Concurrency mechanisms
There is a large design space for concurrent language mechanisms. Two
requirements are separation, to prevent inconsistent access to shared
resources, and co-operation for communication between tasks.

Various language paradigms have been followed, e.g.:

locks and conditions: tasks share memory and exclude and signal one
another using shared memory (e.g., Java);

synchronous message passing: tasks share communication channels and
use rendezvous to communicate (e.g., Ada, CML, Go);

asynchronous message passing: a task offers a mail box which receives
messages (e.g. Erlang, Scala Actors);

lock-free algorithms or transactional memory: tasks share memory but
detect and repair conflicts (e.g., libraries in Haskell, Clojure)

Language designs have also been influenced by mathematical models used
to capture and analyse the essence of concurrent systems, for example,
CSP, π-calculus, the join calculus, and the ambient calculus.



Reminder: the problems with locks

Deadlock when two threads try to acquire the same locks in different
orders;

Priority inversion when the scheduler preempts a lower-priority thread that
holds a lock needed for a higher-priority one;

Convoying when threads waiting on a lock held by a de-scheduled
thread queue up, causing a traffic jam;

Lack of compositionality there is no easy way to compose larger
thread-safe programs from smaller ones



Reminder: the problems with locks

Deadlock when two threads try to acquire the same locks in different
orders;

Priority inversion when the scheduler preempts a lower-priority thread that
holds a lock needed for a higher-priority one;

Convoying when threads waiting on a lock held by a de-scheduled
thread queue up, causing a traffic jam;

Lack of compositionality there is no easy way to compose larger
thread-safe programs from smaller ones



Reminder: the problems with locks

Deadlock when two threads try to acquire the same locks in different
orders;

Priority inversion when the scheduler preempts a lower-priority thread that
holds a lock needed for a higher-priority one;

Convoying when threads waiting on a lock held by a de-scheduled
thread queue up, causing a traffic jam;

Lack of compositionality there is no easy way to compose larger
thread-safe programs from smaller ones



Reminder: the problems with locks

Deadlock when two threads try to acquire the same locks in different
orders;

Priority inversion when the scheduler preempts a lower-priority thread that
holds a lock needed for a higher-priority one;

Convoying when threads waiting on a lock held by a de-scheduled
thread queue up, causing a traffic jam;

Lack of compositionality there is no easy way to compose larger
thread-safe programs from smaller ones



Outline

1 Concurrency mechanisms

2 Actors

3 Software Transactional Memory

4 Summary



Scala and Erlang
Scala is a functional object-oriented language that compiles to the Java
Virtual Machine. It allows full interoperability with Java. Scala is designed
by Martin Odersky and his team at EPFL, Lausanne, Switzerland.
Scala’s concurrency is based on the Actor model also used in several other
languages. A notable commercial success story is Ericsson’s language
Erlang designed for massively concurrent telecommunications equipment.

Ericsson AXD 301 multiservice 10–160Gbit/s switch
Nortel 8661 SSL Acceleration Ethernet Routing Switch

http://www.scala-lang.org


Asynchronous message passing

An actor is a process abstraction that interacts with other actors by
message passing. Message sending is asynchronous. Each actor has a mail
box which buffers incoming messages. Messages are processed by
matching.

Sending

actor ! message

// sender is the last actor
// we received from
sender ! message

// shorthand for above
reply(message)

Receiving

receive {
case pattern => action
...
case pattern => action

}



Example: ping pong

class Ping(pong: Actor)
extends Actor {

def act() {
var pings = 0;
pong ! Ping
while (true) {

receive {
case Pong =>
pong ! Ping
pings += 1
if (pings % 1000 == 0)
Console.println(

"Ping: pong "+pings)
}

}}}

class Pong extends Actor {
def act() {

var pongs = 0
while (true) {

receive {
case Ping =>

sender ! Pong
pongs += 1

}}}}

object pingpong
extends Application {

val pong = new Pong
val ping = new Ping(pong)
ping.start
pong.start

}



Reply-response protocols

Actors often take part in sequences of message exchanges, which are more
synchronous in nature. There is a special encoding for writing these.

Sending and receiving

actor !? message

is like

actor ! (self ,message)
receive {

case pattern => ...
}



Event-based actors

Actors are either thread-based or event-based. Thread based actors block
on receive calls. Event-based actors provide an alternative which uses a
more lightweight mechanism.

Event based receiving

react {
case pattern => action
...
case pattern => action

}

A react statement encapsulates the rest of a computation for an actor and
never returns. The event-based framework generates tasks that process
messages and suspend and resume actors, using continuations derived
from the react blocks.



Example: bounded buffer in Scala

class BoundedBuffer[T](N: int) {
private case class Put(x: T)
private case object Get
private case object Stop

def put(x: T) {
buffer !? Put(x)

}

def get: T =
(buffer !? Get).asInstanceOf[T]

def stop() {
buffer !? Stop

}

private val buffer = actor {
val buf = new Array[T](N)
var in = 0; var out = 0; var n = 0
loop {

react {
case Put(x) if n < N =>
buf(in) = x
in = (in + 1) % N
n = n + 1; reply()

case Get if n > 0 =>
val r = buf(out)
out = (out + 1) % N
n = n − 1; reply(r)

case Stop => reply()
exit("stopped")

}
}}



Outline

1 Concurrency mechanisms

2 Actors

3 Software Transactional Memory

4 Summary



Software Transactional Memory

Transactional Memory is a lock-free way of managing shared memory
between concurrent tasks, inspired by transaction processing in databases.
It was proposed and refined by Herlihy, Moss, Shavit and others.

The basic ideas are:

memory accesses are grouped into transactions: sequences of reads
and writes;
each transaction is committed atomically from the point of view of
other transactions;
transactions may be aborted and retried.

In practice, transactions are executed with optimistic concurrency,
detecting interference. If two transactions conflict by reading and writing
the same location, one will be aborted and retried.

Software Transactional Memory (STM) is an implementation in software,
as part of a library or language runtime.



Example: synchronized unbounded buffer in Java

class SynchronizedQueue<T> {

Node sentinel = new Node(null);
Node head = sentinel;
Node tail = sentinel;

class Node {
T item;
Node next;
Node(T item) {

this.item = item;
}

}

public synchronized void put(T item) {
Node node = new Node(item);
node.next = tail;
tail = node;
notifyAll ();

}

public synchronized T get()
throws InterruptedException {

while (head == tail) {
wait();

}
T item = head.item;
head = head.next;
return item;

}

...



Example: lock-free unbounded buffer in Java

import
j .u.c.atomic.AtomicReference;

class LockFreeQueue<T> {
AtomicReference<Node> head;
AtomicReference<Node> tail;

class Node {
T item;
AtomicReference<Node> next;
Node(T item) {
this.item = item;
next = new
AtomicReference

<Node>(null);
}
}

public void put(T item) {
Node node = new Node(item);
while (true) {
Node last = tail.get();
Node next = last.next.get();
if (last == tail.get()) {

if (next == null) {
if (last .next.

compareAndSet(next, node)) {
tail .compareAndSet(last, node);
return;

}
} else {

tail .compareAndSet(last,next);
}

}
}
}

...



Example: STM unbounded buffer in (fantasy) STM-Java

class STMQueue<T> {
Node sentinel = new Node(null);
Node head = sentinel;
Node tail = sentinel;

class Node {
T item;
Node next;
Node(T item) {

this.item = item;
}

}

public void put(T item) {
atomic {
Node node = new Node(item);
node.next = tail;
tail = node;

}
}

public T get() {
atomic {

if (head == tail) {
retry;

}
T item = head.item;
head = head.next;
return item;

}
}



Software Transactional Memory in Haskell

The STM library for the Glasgow Haskell Compiler (GHC) provides elegant
high-level language support for STMs implemented by Simon Peyton Jones
and others.

Transactions are first-class values of monadic type STM a

Transactions access shared memory in transaction variables, via
readTVar and writeTVar operations.
Transactions can block with retry

Transactions can be freely composed with monadic sequencing,
nested atomically blocks and orElse choices.

See Chapter 24 of Beautiful Code, edited by Greg Wilson, O’Reilly 2007.

http://research.microsoft.com/~simonpj/papers/stm/


Outline

1 Concurrency mechanisms

2 Actors

3 Software Transactional Memory

4 Summary



Summary

Message Passing Concurrency with Actors

Each actor has a mail box, which receives messages asynchronously.
Actors sift through received messages by pattern-matching.
Scala actors can be either thread-based or event-based. Thread-based
actors block JVM threads when waiting; event-based actors use task
management within a JVM thread to allow cheaper context switching.

Concurrency with Transactional Memory

Transactions are sequences of operations committed atomically.
Transactions can be aborted and retried.
They can be composed elegantly and cleanly.
STM implementations hide a lot of clever tricks.



Homework

To prepare for the next lectures, familiarise/remind yourself of Haskell:
http://blob.inf.ed.ac.uk/aplcourse/2010/02/haskell-resources/
http://learnyouahaskell.com/

In each of Scala (using actors) and Haskell (using STMs):
By rounding out the code fragments give, give complete
implementations of unbounded and bounded queues and test them;
Try re-implementing your pigeon fancier program (or another example,
e.g., the Dining Philosophers or Santa Claus).

http://blob.inf.ed.ac.uk/aplcourse/2010/02/haskell-resources/
http://learnyouahaskell.com/


References

TBC.


	Concurrency mechanisms
	Actors
	Software Transactional Memory
	Summary

