
http://www.inf.ed.ac.uk/teaching/courses/apl

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Advances in Programming Languages
APL17: XML processing with CDuce

David Aspinall
(see final slide for the credits and pointers to sources)

School of Informatics
The University of Edinburgh

Friday 26th November 2010
Semester 1 Week 10

http://www.inf.ed.ac.uk/teaching/courses/apl
http://www.ed.ac.uk
http://homepages.ed.ac.uk/da
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

Topic: Bidirectional Programming and Text Processing

This block of lectures covers some language techniques and tools for
manipulating structured data and text.

Motivations, simple bidirectional transformations

Boomerang and complex transformations

XML processing with CDuce

This lecture introduces some language advances in text processing
languages.

Outline

1 Introduction

2 CDuce Example

3 Foundations: Types, Patterns and Queries

4 More Examples

5 Summary

Outline

1 Introduction

2 CDuce Example

3 Foundations: Types, Patterns and Queries

4 More Examples

5 Summary

Evolution of XML processing languages

There is now a huge variety of special purpose XML processing languages,
as well as language extensions and bindings to efficient libraries.

We might characterise the evolution like this:

Stage 0: general purpose text manipulation; basic doc types
AWK, sed, Perl, . . .
DTDs, validation as syntax checking

Stage 1: abstraction via a parser and language bindings.
SAX, DOM, . . .

Stage 3: untyped XML-specific languages; better doc types
XSLT, XPath
XML Schema, RELAX NG, validation as type checking

Stage 4: XML document types inside languages
Schema translators: HaXML, . . .
Dedicated special-purpose languages: XDuce, XQuery
Embedded/general purpose: Xstatic, Cω, CDuce.

The CDuce Language

Features:
General-purpose functional programming basis.
Oriented to XML processing. Embeds XML documents
Efficient. Also has OCaml integration OCamlDuce.

Intended use:
Small “adapters” between different XML applications
Larger applications that use XML
Web applications and services

Status:
Quality research prototype, though project wound down now.
Public release, maintained and packaged for Linux distributions.
My recommendation: try http://cduce.org/cgi-bin/cduce first.

http://cduce.org/cgi-bin/cduce

Type-centric Design

Types are pervasive in CDuce:

Static validation
E.g.: does the transformation produce valid XHTML ?

Type-driven programming semantics
At the basis of the definition of patterns
Dynamic dispatch
Overloaded functions

Type-driven compilation
Optimizations made possible by static types
Avoids unnecessary and redundant tests at runtime
Allows a more declarative style

Outline

1 Introduction

2 CDuce Example

3 Foundations: Types, Patterns and Queries

4 More Examples

5 Summary

XML syntax

<staffdb>
<staffmember>
<name>David Aspinall</name>
<email>da@inf.ed.ac.uk</email>
<office>IF 4.04A</office>

</staffmember>
<staffmember>
<name>Ian Stark</name>
<email>Ian.Stark@ed.ac.uk</email>
<office>IF 5.04</office>

</staffmember>
<staffmember>
<name>Philip Wadler</name>
<email>wadler@inf.ed.ac.uk</email>
<office>IF 5.31</office>

</staffmember>
</staffdb>

CDuce syntax

let staffdb =
<staffdb>[
<staffmember>[
<name>"David Aspinall"
<email>"da@inf.ed.ac.uk"
<office>"IF 4.04A"]

<staffmember>[
<name>"Ian Stark"
<email>"Ian.Stark@ed.ac.uk"
<office>"IF 5.04"]

<staffmember>[
<name>"Philip Wadler"
<email>"wadler@inf.ed.ac.uk"
<office>"IF 5.31"]

]

CDuce Types

We can define a CDuce type a bit like a DTD or XML Schema:

type StaffDB = <staffdb>[StaffMember∗]
type StaffMember = <staffmember>[Name Email Office]
type Name = <name>[PCDATA]
type Echar = ’a’−−’z’ | ’A’−−’Z’ | ’0’−−’9’ | ’_’ | ’.’
type Email = <email>[Echar+ ’@’ Echar+]
type Office = <office>[PCDATA]

Using these types we can validate the document given before, simply by
ascribing its type in the declaration:

let staffdb : StaffDB =
<staffdb>[
<staffmember>[

...

CDuce Processing

let staffdb : StaffDB =
<staffdb>[
<staffmember>[
<name>"David Aspinall"
<email>"da@inf.ed.ac.uk"
<office>"IF 4.04A"]

...
]

let staffers : [String∗] =
match staffdb with <staffdb>mems −>

(map mems with (<_>[<_>n _ _])−>n)

val staffers : [String*] =
["David Aspinall" "Ian Stark" "Philip Wadler"]

Outline

1 Introduction

2 CDuce Example

3 Foundations: Types, Patterns and Queries

4 More Examples

5 Summary

Type-safe XML Processing

XML has evolved into a text-based general purpose data representation
language, used for storing and transmitting everything from small web
pages to enormous databases.

Roughly, two kinds of tasks:

transforming changing XML from one format to another, inc. non-XML
querying searching and gathering information from an XML document

Both activities require having prescribed document formats, which may be
partly or wholly specified by some form of typing for documents.

Regular Expression Types

Regular expression types were pioneered in XDuce, an ancestor of CDuce.

We have already seen these in Boomerang.

The idea is to introduce subtypes of the type of strings, defined by regular
expressions. The values of a regular expression R type are exactly the set
of strings matching R.

R ::= ∅ | s | R|R | R∗

CDuce takes this idea and runs with it, starting with basic set-theoretic
type constructors and recursion. Types are treated as flexibly as possible
and type inference as precisely as possible.

CDuce Types
t ::= Int | Char | Atom | type constants

| Any | Empty everything/nothing
| {a1 = t1; . . . ;an = tn} records
| (t1, t2) | (t1 → t2) products and functions
| t1&t2 | t1|t2 | t1\t2 set combinations
| v singletons
| T where T1 = t1 and · · · and Tn = tn recursive types
| 〈t1 t2〉t3 XML: tags, attrs, elts

CDuce has a rich type structure built with simple combinators
Many types, included those for XML, are encoded.
Types stand for sets of values (i.e., fully-evaluated expressions).
A sophisticated type inference algorithm works with rich equivalences
and many subtyping relations derived from the set interpretation.

CDuce Types
t ::= Int | Char | Atom | type constants

| Any | Empty everything/nothing
| {a1 = t1; . . . ;an = tn} records
| (t1, t2) | (t1 → t2) products and functions
| t1&t2 | t1|t2 | t1\t2 set combinations
| v singletons
| T where T1 = t1 and · · · and Tn = tn recursive types
| 〈t1 t2〉t3 XML: tags, attrs, elts

Int is arbitrary precision, Char set of Unicode
Can write integer or character ranges as i − −j.
Atoms are symbolic constants (like symbols in lisp)
For example, ’nil

CDuce Types
t ::= Int | Char | Atom | type constants

| Any | Empty everything/nothing
| {a1 = t1; . . . ;an = tn} records
| (t1, t2) | (t1 → t2) products and functions
| t1&t2 | t1|t2 | t1\t2 set combinations
| v singletons
| T where T1 = t1 and · · · and Tn = tn recursive types
| 〈t1 t2〉t3 XML: tags, attrs, elts

Any is the universal type, any value belongs
Empty is the empty type, no value belongs
These are used to define richer types or constraints for patterns

CDuce Types
t ::= Int | Char | Atom | type constants

| Any | Empty everything/nothing
| {a1 = t1; . . . ;an = tn} records
| (t1, t2) | (t1 → t2) products and functions
| t1&t2 | t1|t2 | t1\t2 set combinations
| v singletons
| T where T1 = t1 and · · · and Tn = tn recursive types
| 〈t1 t2〉t3 XML: tags, attrs, elts

Record values are written {a1 = v1; . . . ;a1 = vn}

Records are used to define attribute lists

CDuce Types
t ::= Int | Char | Atom | type constants

| Any | Empty everything/nothing
| {a1 = t1; . . . ;an = tn} records
| (t1, t2) | (t1 → t2) products and functions
| t1&t2 | t1|t2 | t1\t2 set combinations
| v singletons
| T where T1 = t1 and · · · and Tn = tn recursive types
| 〈t1 t2〉t3 XML: tags, attrs, elts

By default record types are open (match records with more fields)
Closed records are allowed too: {|a1 = t1; . . . ;a1 = tn|}.

CDuce Types
t ::= Int | Char | Atom | type constants

| Any | Empty everything/nothing
| {a1 = t1; . . . ;an = tn} records
| (t1, t2) | (t1 → t2) products and functions
| t1&t2 | t1|t2 | t1\t2 set combinations
| v singletons
| T where T1 = t1 and · · · and Tn = tn recursive types
| 〈t1 t2〉t3 XML: tags, attrs, elts

Pairs are written (v1, v2).
Longer tuples and sequences are encoded, Lisp-style.
For example, [v1 v2 v3] means (v1, (v2, (v3, ’nil))).

CDuce Types
t ::= Int | Char | Atom | type constants

| Any | Empty everything/nothing
| {a1 = t1; . . . ;an = tn} records
| (t1, t2) | (t1 → t2) products and functions
| t1&t2 | t1|t2 | t1\t2 set combinations
| v singletons
| T where T1 = t1 and · · · and Tn = tn recursive types
| 〈t1 t2〉t3 XML: tags, attrs, elts

Function types are used as interfaces for function declarations.
A simple function declaration has the form:

let foo (t−>s) x −> e

CDuce Types
t ::= Int | Char | Atom | type constants

| Any | Empty everything/nothing
| {a1 = t1; . . . ;an = tn} records
| (t1, t2) | (t1 → t2) products and functions
| t1&t2 | t1|t2 | t1\t2 set combinations
| v singletons
| T where T1 = t1 and · · · and Tn = tn recursive types
| 〈t1 t2〉t3 XML: tags, attrs, elts

The general function declaration has the form:

let foo (t1−>s1;. . . ;tn−>sn) | p1−>e1 | . . . pm−>em

where p1 . . . pm are patterns.

CDuce Types
t ::= Int | Char | Atom | type constants

| Any | Empty everything/nothing
| {a1 = t1; . . . ;an = tn} records
| (t1, t2) | (t1 → t2) products and functions
| t1&t2 | t1|t2 | t1\t2 set combinations
| v singletons
| T where T1 = t1 and · · · and Tn = tn recursive types
| 〈t1 t2〉t3 XML: tags, attrs, elts

Boolean connectives: intersection t1&t2, union t1|t2 and difference
t1\t2

These have the expected set-theoretic semantics.
Useful for overloading, pattern matching, precise typing

CDuce Types
t ::= Int | Char | Atom | type constants

| Any | Empty everything/nothing
| {a1 = t1; . . . ;an = tn} records
| (t1, t2) | (t1 → t2) products and functions
| t1&t2 | t1|t2 | t1\t2 set combinations
| v singletons
| T where T1 = t1 and · · · and Tn = tn recursive types
| 〈t1 t2〉t3 XML: tags, attrs, elts

A value used v in place of a type stands for the single-element type
whose unique element is v.

CDuce Types
t ::= Int | Char | Atom | type constants

| Any | Empty everything/nothing
| {a1 = t1; . . . ;an = tn} records
| (t1, t2) | (t1 → t2) products and functions
| t1&t2 | t1|t2 | t1\t2 set combinations
| v singletons
| T where T1 = t1 and · · · and Tn = tn recursive types
| 〈t1 t2〉t3 XML: tags, attrs, elts

Sequences [t∗] are defined with recursive types, e.g.:

[Char∗] ≡ (T where T = (Char, T) | nil)

Strings are encoded as [Char∗], like in Haskell.
This interpretation matches XML parsers well.

CDuce Types
t ::= Int | Char | Atom | type constants

| Any | Empty everything/nothing
| {a1 = t1; . . . ;an = tn} records
| (t1, t2) | (t1 → t2) products and functions
| t1&t2 | t1|t2 | t1\t2 set combinations
| v singletons
| T where T1 = t1 and · · · and Tn = tn recursive types
| 〈t1 t2〉t3 XML: tags, attrs, elts

XML fragments have a tag, attribute list and child elements
This is actually a shorthand, again...

CDuce Types
t ::= Int | Char | Atom | type constants

| Any | Empty everything/nothing
| {a1 = t1; . . . ;an = tn} records
| (t1, t2) | (t1 → t2) products and functions
| t1&t2 | t1|t2 | t1\t2 set combinations
| v singletons
| T where T1 = t1 and · · · and Tn = tn recursive types
| 〈t1 t2〉t3 XML: tags, attrs, elts

For example: type Book = <book>[Title (Author+|Editor+) Price?]
is encoded as

Book = (′book, (Title,X | Y))

X = (Author,X | (Price, ′nil) | ′nil)
Y = (Editor, Y | (Price, ′nil) | ′nil)

From types to patterns
Conventional idea: patterns are values with capture variables, wildcards,
constants.

New idea: Patterns = Types + Capture Variables

type List = (Any,List) | ’nil

fun length (x:(List,Int)) : Int =
match x with
| (’ nil , n) −> n
| ((_,t), n) −> length(t, n+1)

Same syntax for types as for values (s, t) not s× t

Values stand for singleton types (e.g., nil)
Wildcard: _ synonym of Any

Why?

Natural simplification: fewer concepts. Execution model based on
pattern matching and grammars defined by type language.

From types to patterns
Conventional idea: patterns are values with capture variables, wildcards,
constants.

New idea: Patterns = Types + Capture Variables

type List = (Any,List) | ’nil

fun length (x:(List,Int)) : Int =
match x with
| (’ nil , n) −> n
| ((_,t), n) −> length(t, n+1)

Same syntax for types as for values (s, t) not s× t

Values stand for singleton types (e.g., nil)
Wildcard: _ synonym of Any

Why? Natural simplification: fewer concepts. Execution model based on
pattern matching and grammars defined by type language.

Rich patterns for XML structure

Suppose an XML type:

type Bib = <bib>[Book∗]
type Book = <book year=String>[Title Author+ Publisher]
type Publisher = String

Then we can pattern match against sequences:

match bibs with
<bib>[(x::<book year="1990">[∗ Publisher\"ACM"] |)∗] −> x

This binds x to the sequence of books published in 1990 from publishers
other than ACM.

Advanced constructs: map and transforms

CDuce has built-in map, transform (map+flatten) and xtransform (tree
recursion) operations.

let bold (x:[Xhtml]):[Xhtml]=
xtransform x with <a (y)>t −> [<a (y)>[t]]

This emboldens all hyper-links in an XHTML document.

The user could write these as higher-order functions in the language, but the built-ins have more
accurate typings than user-defined versions could. For example, by understanding sequences,
result types like C∗D∗ are possible from argument types A∗B∗ and map operations A−〉C and
B − D.

Advanced constructs: querying
SQL-like queries using a pattern-based query sub-language.

Contents of bstore1.example.com/bib.xml:

<bib>
<book year="1994">

<title>TCP/IP Illustrated</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison−Wesley</publisher>
<price>65.95</price>

</book>

<book year="1992">
<title>Advanced Programming in the Unix environment</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison−Wesley</publisher>
<price>65.95</price>

</book>
...

Advanced constructs: querying
SQL-like queries using a pattern-based query sub-language.

Contents of http://bstore2.example.com/reviews.xml:

<reviews>
<entry>

<title>Data on the Web</title>
<price>34.95</price>
<review> A very good discussion of semi−structured database

systems and XML.
</review>

</entry>
<entry>

<title>Advanced Programming in the Unix environment</title>
<price>65.95</price>
<review>

A clear and detailed discussion of UNIX programming.
</review>

</entry>
...

Advanced constructs: querying
SQL-like queries using a pattern-based query sub-language.

In XQuery:

<books−with−prices>
{
for $b in doc("http://bstore1.example.com/bib.xml")//book,

$a in doc("http://bstore2.example.com/reviews.xml")//entry
where $b/title = $a/title
return

<book−with−prices>
{ $b/title }
<price−bstore2>{ $a/price/text() }</price−bstore2>
<price−bstore1>{ $b/price/text() }</price−bstore1>

</book−with−prices>
}

</books−with−prices>

Advanced constructs: querying
SQL-like queries using a pattern-based query sub-language.

In CDuce:

<books−with−prices>
select <book−with−price>[t1

<price−bstore2>p2
<price−bstore1>p1]

from <bib>[b::Book∗] in [bstore1],
<book>[t1 & Title _∗ <price>p1] in b
<reviews>[e::Entry∗] in [bstore2],
<entry>[t2 & Title <price>p2; _] in e

where t1=t2

See XQuery’s XML Query Use Case examples, Q5

http://www.w3.org/TR/xquery-use-cases/#xmp-queries-results-q5

Outline

1 Introduction

2 CDuce Example

3 Foundations: Types, Patterns and Queries

4 More Examples

5 Summary

Online Demo

Go here: http://cduce.org/cgi-bin/cduce

Try these too: http://cduce.org/demo.html

http://cduce.org/cgi-bin/cduce
http://cduce.org/demo.html

Outline

1 Introduction

2 CDuce Example

3 Foundations: Types, Patterns and Queries

4 More Examples

5 Summary

Summary

XML processing with CDuce
A general purpose language designed for XML processing
Functional, with a very rich type/subtyping structure
Idea: Patterns = Types + Capture Variables
Patterns used to drive evaluation, further language constructs

Homework
Visit http://www.cduce.org and try the tutorial, then the sample
problems.

http://www.cduce.org

References

See http://www.cduce.org/papers.html for a list of sources.

Some slides were based on Giuseppe Castagna’s invited talk CDuce, an
XML Processing Programming Language from Theory to Practice at at
SBLP 2007: The 11th Brazilian Symposium on Programming Languages
Symposium on Programming Languages.

http://www.cduce.org/papers.html

	Introduction
	CDuce Example
	Foundations: Types, Patterns and Queries
	More Examples
	Summary

