
http://www.inf.ed.ac.uk/teaching/courses/apl

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Advances in Programming Languages
APL15: Bidirectional Programming

David Aspinall

School of Informatics
The University of Edinburgh

Friday 19 November 2010
Semester 1 Week 9

http://www.inf.ed.ac.uk/teaching/courses/apl
http://www.ed.ac.uk
http://homepages.ed.ac.uk/da
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

Topic: Bidirectional Programming and Text Processing

This block of lectures covers some language techniques and tools for
manipulating structured data and text.

Motivations, simple bidirectional transformations

Boomerang and complex transformations

XML processing with CDuce

This lecture introduces some of the motivations and basic concepts behind
bidirectional programming.

Outline

1 Motivations

2 Language design

3 Semantics

4 Boomerang example

5 Summary

Outline

1 Motivations

2 Language design

3 Semantics

4 Boomerang example

5 Summary

View Update Problem

A classic problem in databases: how can we propagate changes in a view
on the data back into the database itself?

University Staff Database (Confidential)
Name: David Aspinall
Email: da@inf.ed.ac.uk
Staff Number: 1230935
Pay grade: pt 6.II
Home Address: 10 London Road, E7 5QA
. . .

View Update Problem

A classic problem in databases: how can we propagate changes in a view
on the data back into the database itself?

University Cycle to Work Scheme
Name: David Aspinall
Home Address: 10 London Road, E7 5QA
Distance to work: 418 miles

View Update Problem

A classic problem in databases: how can we propagate changes in a view
on the data back into the database itself?

University Cycle to Work Scheme
Name: David Aspinall
Home Address: 10 London Road, E7 5QA
Distance to work: 418 miles

A bit odd!

View Update Problem

A classic problem in databases: how can we propagate changes in a view
on the data back into the database itself?

University Cycle to Work Scheme
Name: David Aspinall
Home Address: 10 London Road, EH7 5QA
Distance to work: 2.6 miles

Corrected. A more feasible candidate for cycling to work.

View Update Problem

A classic problem in databases: how can we propagate changes in a view
on the data back into the database itself?

University Staff Database (Confidential)
Name: David Aspinall
Email: da@inf.ed.ac.uk
Staff Number: 1230935
Pay grade: pt 6.II
Home Address: 10 London Road, EH7 5QA
. . .

This fix should be updated in the staff database.

View Update: requirements

s
q // v

A view v is generated by an arbitrary query q on the source database;

The view is updated by an update function u to v ′;
The source must be updated correspondingly to s ′ by a translation
function t, so that the same query q yields v ′ again.

View Update: requirements

s
q // v

u

��
v ′

A view v is generated by an arbitrary query q on the source database;
The view is updated by an update function u to v ′;

The source must be updated correspondingly to s ′ by a translation
function t, so that the same query q yields v ′ again.

View Update: requirements

s
q //

t
��

v

u

��
s ′ q

// v ′

A view v is generated by an arbitrary query q on the source database;
The view is updated by an update function u to v ′;
The source must be updated correspondingly to s ′ by a translation
function t, so that the same query q yields v ′ again.

View Update: Challenges

The view update problem has been a research challenge for a long time.
Since query q is arbitrary, it may be

non-injective: a view update has many possible source updates
e.g., imagine updating “distance to work” instead of postcode
non-surjective: an update may have no possible source update
e.g., suppose the view included “nearest quiet road”

In database world, present state-of-the-art is to use triggers which are
custom programmed for particular views. Drawbacks:

must be re-programmed for each query/allowed update
duplicates information from the query
error prone: must check consistency with query, maintain in tandem.

View Update: Challenges

The view update problem has been a research challenge for a long time.
Since query q is arbitrary, it may be

non-injective: a view update has many possible source updates
e.g., imagine updating “distance to work” instead of postcode

non-surjective: an update may have no possible source update
e.g., suppose the view included “nearest quiet road”

In database world, present state-of-the-art is to use triggers which are
custom programmed for particular views. Drawbacks:

must be re-programmed for each query/allowed update
duplicates information from the query
error prone: must check consistency with query, maintain in tandem.

View Update: Challenges

The view update problem has been a research challenge for a long time.
Since query q is arbitrary, it may be

non-injective: a view update has many possible source updates
e.g., imagine updating “distance to work” instead of postcode
non-surjective: an update may have no possible source update
e.g., suppose the view included “nearest quiet road”

In database world, present state-of-the-art is to use triggers which are
custom programmed for particular views. Drawbacks:

must be re-programmed for each query/allowed update
duplicates information from the query
error prone: must check consistency with query, maintain in tandem.

View Update: Challenges

The view update problem has been a research challenge for a long time.
Since query q is arbitrary, it may be

non-injective: a view update has many possible source updates
e.g., imagine updating “distance to work” instead of postcode
non-surjective: an update may have no possible source update
e.g., suppose the view included “nearest quiet road”

In database world, present state-of-the-art is to use triggers which are
custom programmed for particular views. Drawbacks:

must be re-programmed for each query/allowed update
duplicates information from the query
error prone: must check consistency with query, maintain in tandem.

Solution: Bidirectional programming

Idea: write one program get for the query q, and automatically derive
another one put which propagates view changes back to the source data,
whenever it is possible.

Advantages:
no need to maintain separate programs
ideally, consistency is ensured automatically too.

The put function goes in the opposite direction to get. So when both
exist, we have a bidirectional transformation.

Hence bidirectional programming, where we write bidirectional
transformations. Ordinary programs, of course, run only in one direction.

Other applications

Bidirectional transformations have a myriad of applications.

Some examples:

software engineering: solving the “round-trip problem” of
model-driven development.
user interfaces: helping to implement the model-view-controller
paradigm, by ensuring that view updates consistently change the
model and vice-versa.
data synchronization: unifying and mediating between data held in
different formats, such as address book data.
marshalling: transferring data across networks, or mediating between
different applications, allowing changes in a safe way.

Other applications

Bidirectional transformations have a myriad of applications.

Some examples:
software engineering: solving the “round-trip problem” of
model-driven development.

user interfaces: helping to implement the model-view-controller
paradigm, by ensuring that view updates consistently change the
model and vice-versa.
data synchronization: unifying and mediating between data held in
different formats, such as address book data.
marshalling: transferring data across networks, or mediating between
different applications, allowing changes in a safe way.

Other applications

Bidirectional transformations have a myriad of applications.

Some examples:
software engineering: solving the “round-trip problem” of
model-driven development.
user interfaces: helping to implement the model-view-controller
paradigm, by ensuring that view updates consistently change the
model and vice-versa.

data synchronization: unifying and mediating between data held in
different formats, such as address book data.
marshalling: transferring data across networks, or mediating between
different applications, allowing changes in a safe way.

Other applications

Bidirectional transformations have a myriad of applications.

Some examples:
software engineering: solving the “round-trip problem” of
model-driven development.
user interfaces: helping to implement the model-view-controller
paradigm, by ensuring that view updates consistently change the
model and vice-versa.
data synchronization: unifying and mediating between data held in
different formats, such as address book data.

marshalling: transferring data across networks, or mediating between
different applications, allowing changes in a safe way.

Other applications

Bidirectional transformations have a myriad of applications.

Some examples:
software engineering: solving the “round-trip problem” of
model-driven development.
user interfaces: helping to implement the model-view-controller
paradigm, by ensuring that view updates consistently change the
model and vice-versa.
data synchronization: unifying and mediating between data held in
different formats, such as address book data.
marshalling: transferring data across networks, or mediating between
different applications, allowing changes in a safe way.

Outline

1 Motivations

2 Language design

3 Semantics

4 Boomerang example

5 Summary

Designing a bidirectional language

We could solve the bidirectional problem by:

meta-programming: trying to generate put from get, case-by-case.

+ use an existing language and meta-mechanism
- difficult; impossible to solve for all updates
- must explain failures to programmer

designing a new special purpose language or DSL abstraction, for
writing put and get at once.

+ can easily restrict syntactically what is expressed
- programmer must learn new syntax/abstraction

Designing a bidirectional language

We could solve the bidirectional problem by:

meta-programming: trying to generate put from get, case-by-case.
+ use an existing language and meta-mechanism
- difficult; impossible to solve for all updates
- must explain failures to programmer

designing a new special purpose language or DSL abstraction, for
writing put and get at once.

+ can easily restrict syntactically what is expressed
- programmer must learn new syntax/abstraction

Designing a bidirectional language

We could solve the bidirectional problem by:

meta-programming: trying to generate put from get, case-by-case.
+ use an existing language and meta-mechanism
- difficult; impossible to solve for all updates
- must explain failures to programmer

designing a new special purpose language or DSL abstraction, for
writing put and get at once.

+ can easily restrict syntactically what is expressed
- programmer must learn new syntax/abstraction

Designing a bidirectional language

We could solve the bidirectional problem by:

meta-programming: trying to generate put from get, case-by-case.
+ use an existing language and meta-mechanism
- difficult; impossible to solve for all updates
- must explain failures to programmer

designing a new special purpose language or DSL abstraction, for
writing put and get at once.

+ can easily restrict syntactically what is expressed
- programmer must learn new syntax/abstraction

Boomerang: A Programming Language Approach
Ideas behind Boomerang:

design a special purpose bidirectional programming language
every expressible program denotes a bidirectional transformation
error messages are specific to domain
can ensure all programs have correct bidirectional behaviour
take a functional approach (ex: why?)

History at University of Pennsylvania, Benjamin Pierce:
late 1990s, early 2000s: popular Unison file synchronization tool built
on carefully designed semantic foundations.
mid 2000s: Harmony project, investigating view updates for XML and
then bidirectional programming.

See J. Nathan Foster’s, PhD thesis Bidirectional Programming Languages, University of
Pennsylvania, 2009. The diagram on p.35 and some of the following content is adapted from
this PhD thesis and earlier papers co-authored with Benjamin Pierce and other collaborators.

http://www.cs.cornell.edu/~jnfoster/

Outline

1 Motivations

2 Language design

3 Semantics

4 Boomerang example

5 Summary

Putting and Getting

Suppose we have a set of source values S and view values V.

The basic bidirectional property we want is that given some get function
(database query),

get : S→ V

we should have a way to compute updates on S from altered views, i.e.,
find a corresponding put function with type:

put : V,S→ S

which transforms a changed view into an update on S, i.e., a function from
S to S.

An alternative type for put is possible: we might instead try to record and characterise the
update operations and make put take as its argument a delta. This might allow more accurate
source changes, can you think of an example?

Putting and Getting

Suppose we have a set of source values S and view values V.

The basic bidirectional property we want is that given some get function
(database query),

get : S→ V

we should have a way to compute updates on S from altered views, i.e.,
find a corresponding put function with type:

put : V,S→ S

which transforms a changed view into an update on S, i.e., a function from
S to S.

An alternative type for put is possible: we might instead try to record and characterise the
update operations and make put take as its argument a delta. This might allow more accurate
source changes, can you think of an example?

Put and Get laws

s
get(s) //

put(v ′,s)
��

v

��
s ′ get(s ′)

// v ′

To make this commute we want this equation to be satisfied: for all view
elements v ′ and source elements s,

get(put(v ′, s)) = v ′

A put followed by a get must give us back the thing we put in: the
PutGet law.

On the other hand, if we put back the same thing that we got out, we
don’t expect any change to the source:

put(get(s), s) = s
This is the GetPut law.

PutGet and GetPut together are a rather loose specification. . .

Put and Get laws

s
get(s) //

put(v ′,s)
��

v

��
s ′ get(s ′)

// v ′

To make this commute we want this equation to be satisfied: for all view
elements v ′ and source elements s,

get(put(v ′, s)) = v ′

A put followed by a get must give us back the thing we put in: the
PutGet law.
On the other hand, if we put back the same thing that we got out, we
don’t expect any change to the source:

put(get(s), s) = s
This is the GetPut law.

PutGet and GetPut together are a rather loose specification. . .

Creating from a view

It’s useful to also be able to synthesise a source element from a view
element, perhaps giving default values to parts of the source that are not
manifest in the view.

This motivates a third type of function:

create : V −→ S

Create must satisfy the obvious CreateGet law:

get(create(v)) = v

Lenses
A lens is an abstraction which captures all these pieces.

A lens l is written l ∈ S⇔ V to show its set of source values S and set of
view values V.

Programming with Lenses

Boomerang is a programming language for constructing lenses.

simple lenses are easy to express
lenses can be combined using combinators
larger lenses can be expressed more easily using grammars
a library of useful pre-defined lenses is supplied

A fundamental design decision is to make the functions that comprise
lenses always total. If a program compiles, then put can never go wrong at
run time due to a forbidden update.

The abstraction is always maintained: combinations of lenses construct
new lenses which again satisfy the required laws.

The language has a strong type system which helps ensure these things
statically. In particular, every lens has a fixed source domain S and view
domain V, described by types. These are often built from regular
expressions denoting sets of strings.

Regular Expressions

Let Σ be an alphabet of characters c ∈ Σ. Strings over the alphabet Σ are

ranged over by s ∈ Σ∗. The empty string is denoted ε. Given two strings

s1 and s2, their concatenation is s1 · s2.

Recall the language of regular expressions R used to describe sets of
strings:

R ::= s | R · R | R|R | R∗

with familiar meanings.
(R1|R2 stands for the union of the sets denoted by R1 and R2).

Simple Lenses: Copy

Given a regular expression R, then

copy R ∈ R⇔ R

defines a lens with source domain R and target (view) domain R, such that
for s, v ∈ R

get(s) = s

put(v, s) = v

create(v) = v

This lens is an identity, it simply copies from source to the view. Since the
source and view domains are the same, no information is hidden.

Simple Lenses: Constant

Given a regular expression R, and any string k, then the constant lens

const R k ∈ R⇔ {k}

such that for s, v ∈ R

get(s) = k

put(v, s) = s

create(v) = default(R)

Going forwards, this lens ignores its source and always produces the view
k. Going backwards, it ignores any (necessarily vacuous) updates and
leaves the source unchanged.

The create an element in the source, we have to pick one. The function
default(R) stands for the choice of an arbitrary value from the set R (in
practice this may be defined by the programmer).

Deletion and Insertion

Lenses to insert and delete are defined using the constant lens.

del R ∈ R⇔ {ε}

del R = const R ε

ins v ∈ {ε}⇔ {v}

ins v = const {ε} v

Simple Lenses: Concatenation

Given two lenses l1 ∈ S1 ⇔ V1 and l2 ∈ S2 ⇔ V2, their concatenation

l1 . l2 ∈ S1 · S2 ⇔ V1 · V2

is defined, provided both S1 · S2 and V1 · V2 are splittable.
i.e., given s ∈ S1 · S2 we can find unique s1 ∈ S1,s2 ∈ S2 such that s1 · s2 = s.

The underlying functions of l1 . l2 each split their inputs and pass to the
underlying functions from l1 and l2 respectively, and then concatenate the
results.

For example:
get(s1 · s2) = (get(s1)) · (get(s2))

Outline

1 Motivations

2 Language design

3 Semantics

4 Boomerang example

5 Summary

First Boomerang Example

module Staffdb =
let NAME = [a−zA−Z]+ let EMAIL = [a−zA−Z@.]+
let STAFFNUM = [0−9]{7} let SALARY = [5−9] . "." . [I]+
let ADDRESS = [a−zA−Z0−9]+
let POSTCODE = [A−Z0−9]+ . " " . [A−Z0−9]+

let cycleinfo : lens =
(copy NAME) . ", "

. del EMAIL . del ", "

. del STAFFNUM . del ", " . del SALARY . del ", "

. del ADDRESS . del ", "

. (ins "Map−distance−from: ")

. (copy POSTCODE)

let cycleinfos : lens =
"" | cycleinfo . (newline . cycleinfo)∗

Testing get

let staffdb : string =
<<
David Aspinall, da@inf.ed.ac.uk, 1230935, 6.II, 10 London Road, E7 5QA
Ian Stark, stark@inf.ed.ac.uk, 0579035, 7.II, 14A Queen Anne Street, EH1 FZM
>>

test cycleinfos.get staffdb = ?

Produces:

Test result:
"David Aspinall, Map-distance-from: E7 5QA
Ian Stark, Map-distance-from: EH1 FZM"

Testing put

test cycleinfos.put
<<
David Aspinall, Map−distance−from: EH7 5QA
Ian Stark, Map−distance−from: EH1 FZM
>>
into staffdb = ?

Produces:

Test result:
"David Aspinall, da@inf.ed.ac.uk, 1230935, 6.II,

10 London Road, EH7 5QA
Ian Stark, stark@inf.ed.ac.uk, 0579035, 7.II,

14A Queen Anne Street, EH1 FZM"

(newlines added to fit on slide)

Outline

1 Motivations

2 Language design

3 Semantics

4 Boomerang example

5 Summary

Summary

Bidirectional Programming
Bidirectional transformations map view updates back to source
Applications: database views, MDD, UIs, sync, . . .
Foundations: get, put, create, and laws.

Next Lecture
Boomerang: positions and normalization
A magic way to get bidirectional transformations

Homework
Check that the simple lenses shown define functions satisfying the
GetPut, PutGet, and CreateGet laws.
Download Boomerang and try it out.

	Motivations
	Language design
	Semantics
	Boomerang example
	Summary

