
http://www.inf.ed.ac.uk/teaching/courses/apl

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Advances in Programming Languages
APL14: Practical tools for Java Correctness

David Aspinall
(slides originally by Ian Stark)

School of Informatics
The University of Edinburgh

Friday 12 November 2010
Semester 1 Week 8

http://www.inf.ed.ac.uk/teaching/courses/apl
http://www.ed.ac.uk
http://homepages.ed.ac.uk/da
http://www.inf.ed.ac.uk/~stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

Topic: Augmented Languages for Correctness

This block of lectures covers some language techniques and tools for
improving program quality:

Augmentations and Certifying Correctness

Assertions and Hoare Logic

Practical tools for Java Correctness

This lecture introduces some practical tools for helping establish
correctness properties of Java programs.

Outline

1 JML, the Java Modeling Language
Samples of JML

2 ESC/Java 2
Common idioms
Behavioural subtyping
Frame conditions

3 FindBugs

4 Summary

Outline

1 JML, the Java Modeling Language
Samples of JML

2 ESC/Java 2
Common idioms
Behavioural subtyping
Frame conditions

3 FindBugs

4 Summary

Model-based specification
Modeling (sic) is an abstraction technique for system design and
specification.
A model is a representation of the desired system.
A formal model is one that has a precise description in a formal language.
A model differs from an implementation in that it might:

capture only some aspects of the system (e.g., interfaces);
be partial, leaving some parts unspecified;
not be executable.

An implementation of the system can be compared to the model.
Sometimes the model is iteratively refined to give the implementation.

Sample applications of modeling in computer software development:
VDM the Vienna Development Method.

B the B language and B method.
Extended ML the extension of Standard ML with specifications.

OCL the Object Constraint Language extension of UML.

The Java Modeling Language

The Java Modeling Language, JML, combines model-based and contract
approaches to specification.

Some design features:

The specification lives close to the code
Within the Java source, in annotation comments /∗@...@∗/

Uses Java syntax and expressions
Rather than a separate specification language.

Common language for many tools and analysis
Tools add their own extensions, and ignore those of others.

Web site: jmlspecs.org

jmlspecs.org

JML: basics

public class Account {
public int credit;

/∗@ requires credit > amount && amount > 0;
@ ensures credit > 0 && credit == \old(credit) − amount;
@∗/

public int withdraw(int amount) {
...

}
}

JML conditions combine logical formulae (&&,==) with Java expressions
(credit, amount). Expressions must be pure: no side-effects.

There are also visibility controls, glossed over in these examples: credit ought not to be public!

JML: exceptions

public class Account {
public int credit;

/∗@ requires credit > amount && amount > 0;
@ ensures credit > 0 && credit == \old(credit) − amount;
@ signals (RefusedException) credit == \old(credit);
@∗/

public int withdraw throws RefusedException (int amount) {
...

}
}

Where ensures speaks about normal termination, signals specifies
properties of the state after exceptional termination.

JML: logical formulae

public class IntArray {
public int[] contents;

/∗@ requires (\forall int i,j;
@ 0<i && i<j && j<contents.length;
@ contents[i] <= contents[j]);
@
@ ensures contents[\result] == value || \result == −1;
@∗/

public int search (int value) { ... }
}

The search routine requires that array contents be sorted on entry. This
would, for example, be necessary if it used binary chop to locate value.

JML: class invariants

public class IntArray {
public int[] contents;

/∗@ invariant (\forall int i,j;
@ 0<i && i<j && j<contents.length;
@ contents[i] <= contents[j]);
@∗/

/∗@ ensures contents[\result] == value || \result == −1
@∗/

public int search (int value) { ... }
}

Now contents must be sorted whenever it is visible to clients of IntArray.

JML: assumptions and assertions

/∗@ assume j∗j < contents.length @∗/
contents[j∗j] = j;

...

a[0] = complexcomputation(a,v);
/∗@ assert (\forall int i; 1<i && i<10; a[0] < a[i]) @∗/

An assumption may help a static analysis tool.

An assertion must always be checked — similarly to Java’s runtime assert.

JML: models and ghosts

public class IntArray {
public int[] contents;

/∗@ model int total;
@ represents total = arraySum(contents)
@∗/

/∗@ ghost int cursor;
@ set cursor = contents.length / 2
@∗/

...
}

A model field represents some property of the model that does not appear
explicitly in the implementation.

A ghost field is a local variable used only by other parts of the specification.

JML: model methods and classes

/∗@ ensures \result = (\sum int i; 0<i && i<a.length; a[i])
@
@ public model int arraySum(int[] a);
@∗/

/∗@ public model class JMLSet { ... } @∗/

Specifications may refer to model methods and even entire model classes
to represent and manipulate desired system properties.

JML provides specifications for the standard Java classes, as well as a
library of model classes for mathematical constructions like sets, bags,
integers and reals (i.e. of arbitrary size and precision).

Dynamic JML tools: running and testing

JML annotations can be used to drive various runtime checks.

jmlc is a compiler which inserts runtime tests for every assertion;
if an assertion fails, an error message provides static and
dynamic information about the failure.

jmlunit creates test classes for JUnit based on preconditions,
postconditions and invariants. These automatically exercise
and test assertions made in the code.

JML annotations also provide formal documentation:

jmldoc generates human-readable web pages from JML
specifications, extending the existing javadoc tool.

Outline

1 JML, the Java Modeling Language
Samples of JML

2 ESC/Java 2
Common idioms
Behavioural subtyping
Frame conditions

3 FindBugs

4 Summary

JML tools: static analysis

The ESC/Java 2 framework carries out a range of static checks on
Java programs. These include formal verification of JML annotations
using a fully-automated theorem prover.
Controversially, the checker is neither sound nor complete: it warns
about many potential bugs, but not all actual bugs.
This is by design: the aim is to find many possible bugs, quickly.

The LOOP tool also attempts to verify JML specifications. Some can
be done automatically; where this is not possible it provides proof
obligations for the interactive PVS theorem prover.

The JACK tool generates proof obligations from JML annotations on
Java and JavaCard programs; these can then be tackled with a variety
of automatic and semi-automatic theorem provers.

ESC/Java2

“The Extended Static Checker for Java version 2 (ESC/Java2) is a
programming tool that attempts to find common run-time errors in
JML-annotated Java programs by static analysis of the program code
and its formal annotations.”

http://kind.ucd.ie/products/opensource/ESCJava2

It is available both as a command-line tool and a plugin for the Eclipse
development environment.

ESC/Java performs different kinds of static check:
checks based on types, flow of data, existing Java declarations;
JML annotation checking that can be carried out directly;
logical assertions that need an external proof tool.

These last ones are passed to the Simplify automated theorem prover.
Recent versions of ESC/Java also support other provers.

http://kind.ucd.ie/products/opensource/ESCJava2

History

ESC/Modula-3 DEC Systems Research Center (SRC) 1991–1996

ESC/Java Compaq SRC, then Hewlett-Packard 1997–2002

ESC/Java2 University of Nĳmegen, University College Dublin 2004–2009

emerging JML+ESC successors
University of Central Florida,
Kansas State University,
Concordia Unversity, . . .

K. Rustan M. Leino. Extended Static Checking: A Ten-Year Perspective
in Informatics: 10 Years Back, 10 Years Ahead. Lecture Notes in
Computer Science 2000, Springer.

Many different checks

ESC/Java2 checks for very many things. These include:

Null pointer dereference
Negative array index
Array index too large
Invalid type casts
Array storage type mismatch
Divide by zero
Negative array size
Unreachable code

Deadlock in concurrent code
Race condition
Unchecked exception
Object invariant broken
Loop invariant broken
Precondition not satisfied
Postcondition not satisfied
Assertion not satisfied

JML assumptions and assertions can help with all of these.

Soundness and Completeness

As a practical tool ESC/Java makes some compromises: it is not perfect.
Not sound: it may approve an incorrect program.
Not complete: it may complain about a correct program.

However, it reliably checks straightforward specifications, and
automatically points out many potential bugs.

In particular:
Distinguishes between errors (definitely bad), warnings (could be bad)
and cautions (can’t be sure it’s good).
Sources of unsoundness and incompleteness are documented.

. . . as we know, there are “known knowns”; there are things we know we know. We also know
there are “known unknowns”; that is to say we know there are some things we do not know.

But there are also “unknown unknowns” — the ones we don’t know we don’t know.
(Donald Rumsfeld, 2002)

Soundness and Completeness

As a practical tool ESC/Java makes some compromises: it is not perfect.
Not sound: it may approve an incorrect program.
Not complete: it may complain about a correct program.

However, it reliably checks straightforward specifications, and
automatically points out many potential bugs.

In particular:
Distinguishes between errors (definitely bad), warnings (could be bad)
and cautions (can’t be sure it’s good).
Sources of unsoundness and incompleteness are documented.

. . . as we know, there are “known knowns”; there are things we know we know. We also know
there are “known unknowns”; that is to say we know there are some things we do not know.

But there are also “unknown unknowns” — the ones we don’t know we don’t know.
(Donald Rumsfeld, 2002)

ESC/Java2 in Eclipse

Alternatively: try the command line tools. Here is a pseudo-demo.

http://www.inf.ed.ac.uk/teaching/courses/apl/2009-2010/slides/escjava-demo-extract.pdf

Common specification idioms: non null

JML and ESC/Java2 introduce keywords for common specifications.

One of the most common specification requirements in Java is that objects
be non-null. That’s because one of the most common Java programming
errors is NullPointerException.

//@ non_null
Object o;

Now every method invocation on o is known to not cause an exception,
but every assignment to o must be checked to be non-null.

This is so important that it is about to enter the Java language as an
official annotation @NonNull, to be exploited by ordinary compilers.

I call it my billion-dollar mistake. It was the invention of the null reference in 1965. [. . .] My
goal was to ensure that all use of references should be absolutely safe, with checking performed

automatically by the compiler. But I couldn’t resist the temptation to put in a null reference
(Tony Hoare, 2009)

Common specification idioms: non null

JML and ESC/Java2 introduce keywords for common specifications.

One of the most common specification requirements in Java is that objects
be non-null. That’s because one of the most common Java programming
errors is NullPointerException.

//@ non_null
Object o;

Now every method invocation on o is known to not cause an exception,
but every assignment to o must be checked to be non-null.

This is so important that it is about to enter the Java language as an
official annotation @NonNull, to be exploited by ordinary compilers.

I call it my billion-dollar mistake. It was the invention of the null reference in 1965. [. . .] My
goal was to ensure that all use of references should be absolutely safe, with checking performed

automatically by the compiler. But I couldn’t resist the temptation to put in a null reference
(Tony Hoare, 2009)

Behavioural subtyping

Part of the object-oriented paradigm: an object in a subclass can behave
like an object in a superclass.

Sometimes known as Liskov’s principle of substitutivity:

properties that can be proved using the specification of an object’s
presumed type should hold even though the object is actually a subtype
of that type [Liskov and Wing, 1994]

This is captured by requiring, when A extends B
each invariant in subclass A =⇒ an invariant in B.
precondition for A.m ⇐= precondition for B.m
postcondition for A.m =⇒ postcondition for B.m

Inherited specifications

Behavioural subtyping is ensured by inherited specifications. A child class
automatically inherits the specification of its parent.

class Parent {
//@ requires i >= 0;
//@ ensures \result >= i;
int m(int i){ ... }

}
class Child extends Parent {

//@ also
//@ requires i <= 0
//@ ensures \result <= i;
int m(int i){ ... }

}

Inherited specifications: a puzzle

The specification for Child is short for:

class Child extends Parent {
/∗@ requires i >= 0;
@ ensures \result >= i;
@ also
@ requires i <= 0
@ ensures \result <= i;
@∗/

int m(int i){ ... }
}

What can the result of m(0) be?

Inherited specifications: the answer

This specification is in fact equivalent to:

class Child extends Parent {
/∗@ requires i <= 0 || i >= 0;
@ ensures i >= 0 ==> \result >= i;
@ ensures i <= 0 ==> \result <= i;
@∗/

int m(int i){ ... }
}

moral: take care specifying methods that may be overridden
complex specifications may use a test

typeof(this)==\type(Parent)

to guard properties that are likely to change in child classes.

Inherited specifications: the answer

This specification is in fact equivalent to:

class Child extends Parent {
/∗@ requires i <= 0 || i >= 0;
@ ensures i >= 0 ==> \result >= i;
@ ensures i <= 0 ==> \result <= i;
@∗/

int m(int i){ ... }
}

moral: take care specifying methods that may be overridden
complex specifications may use a test

typeof(this)==\type(Parent)

to guard properties that are likely to change in child classes.

Methods leading to madness

Imperative programs can be very difficult to verify because of reference
escape and aliasing.

class MyClass {
int i ;

//@ modifies i;
void m(MyClass o) {
i = 3;
o. i = 2; // ESC/Java2 gives a warning

}

Frame conditions

When verifying, we want to use frame conditions that say what stays the
same when a method is executed.

Usually we want to assume that as much as possible is unchanged, but the
conservative default in ESC/Java2 is:

//@ modifies \everything

Another example where the functional paradigm is very useful:

//@ pure
public int getX() { return x; }

The pure annotation implies modifies \nothing.

Future: JMLn and ESCn

ESC/Java2 and other JML tools
have an old-fashioned batch
mode architecture
they’re also stuck on Java 1.4
JML4 proposed an Integrated
Verification Environment
. . . integrated with Eclipse JDT
. . . allowing multi-threaded
verification, with per-method
and per-class parallelism
Development is now suspended,
may be superseded by
JMLEclipse and OpenJML.

JML4 compiler phases

from James, Chalin, Giannas, Karabotsos:
Distributed, Multi-threaded Verification of Java
Programs, SAVCBS 2008.

http://users.encs.concordia.ca/~dsrg/main/projects/jmleclipse/

Outline

1 JML, the Java Modeling Language
Samples of JML

2 ESC/Java 2
Common idioms
Behavioural subtyping
Frame conditions

3 FindBugs

4 Summary

FindBugsTM

Developed since 2004 at University of Maryland, led by Bill Pugh.
Idea: look for patterns that suggest buggy code, partly aided by
program analysis techniques (e.g., for typing information,
reachability).
Examples:

Using == compare objects rather than .equals
Synchronizing access to a field some times but not others
Returning references to private fields in public APIs
. . . and many more, built up by experience of buggy code

To run FindBugs takes no effort at all by programmer
runs standalone on compiled class files, or in Eclipse IDE
false positives, coding conventions means results variable
triage very time consuming

Some mistakes matter, others do not:
http://www.cs.umd.edu/∼pugh/MistakesThatMatter.pdf

http://www.cs.umd.edu/~pugh/MistakesThatMatter.pdf

Outline

1 JML, the Java Modeling Language
Samples of JML

2 ESC/Java 2
Common idioms
Behavioural subtyping
Frame conditions

3 FindBugs

4 Summary

Summary
The Java Modeling Language

JML combines model-based and contract specification
Annotations within code: requires, ensures, . . .
Provides model fields, methods and classes.
Common input language for many tools

ESC/Java 2

Combines several analysis techniques (types, dataflow, proof)
Many checks, but exhibits false positives and missing defects
Primarily batch mode, Java 1.4. Handles non_null, modifies, pure
Follow-ups: watch jmlspecs.org and the JML specs wiki.

Findbugs and Friends

Bug detection via bad patterns, and lightweight verification (e.g.
@NonNull)

http://www.jmlspecs.org/
http://sourceforge.net/apps/trac/jmlspecs/

	JML, the Java Modeling Language
	Samples of JML

	ESC/Java 2
	Common idioms
	Behavioural subtyping
	Frame conditions

	FindBugs
	Summary

