Advances in Programming Languages

APL13: Assertions and Hoare Logic

David Aspinall
(most slides by lan Stark)

School of Informatics
The University of Edinburgh

Tuesday 9 November 2010
Semester 1 Week 8

http://www.inf.ed.ac.uk/teaching/courses/apl

http://www.inf.ed.ac.uk/teaching/courses/apl
http://www.ed.ac.uk
http://homepages.ed.ac.uk/da
http://www.inf.ed.ac.uk/~stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

Topic: Augmented Languages for Correctness

This block of lectures covers some language techniques and tools for
improving program quality:

@ Augmentations and Certifying Correctness
@ Assertions and Hoare Logic

@ Practical Java tools for Correctness

This lecture introduces some language and logic used for establishing
correctness using program verification, in its classic form of Hoare Logic.

© Runtime Assertions

© Logical Assertions

© Axioms, meaning and truth
@ Applications

© Closing

@ Runtime Assertions

Runtime Checking with Assertions

Last Friday's homework:

Read the
http://download.oracle.com/javase/1.4.2 /docs/guide/lang/assert.html

Runtime Checking with Assertions

@ Use
assert b;

to check a boolean expression
@ AssertionError is thrown if b is false
@ b should be pure (side-effect free)

@ Methodology:

e replace “helpful and hopeful” comments

e check invariants, pre-conditions and post-conditions

e ...but not pre-conditions of public APl (I1legalArgumentException)
e can execute with assertion checking off or on (java -ea)

@ Drawbacks: may be expensive, need temporary data, ...

Q. Are Java's runtime assert assertions a language augmentation or a proper extension?

© Logical Assertions

First-order logic

A formal language for describing certain kinds of logical assertion.

Variables x,y,z,x1,... Terms e:=x | f(e,...,en)
Formulae P,Q ::=true | false | R(e1,...,en)

| PAQ | PVQ|P—=Q | P

| Vx.P | 3x.P

A function like f(...) has a fixed number of arguments, its arity. This
might be zero, one or more. For example: 5, sqrt(—), +.

A predicate like R(...) also has an arity: zero (a proposition), one (a
predicate), or more (a relation). For example: true, Even(—), <, =,
Divides(—, —).

¥x,y.(x >B) A (y >x) = (x+y > 10)

A simple imperative language

Pick a minimal language of commands and variable assignment.

Variables a, b, i, n,... Expressions E, B:=a | F(EL,...,En)
Code C :=skip | a:=E | C,C
| if B then Celse C | while B do C
Variables like a, b here are storage cells, distinct from logical variables x, y.

Functions F have an arity, and we assume useful ones like 0, 1, +, sqrt(—).

For example, the following computes the factorial of n and places it in
variable m:

i :=n; a:=1; whilei>0do (a:=axi;i: =i—1); m:=a

Hoare triples

A Hoare triple is an assertion about the behaviour of a program fragment.

{P} C {Q}

Here we have:

@ An imperative program C.

@ A precondition P and a postcondition Q: logical formulae concerning
the state of the program variables.

The triple asserts that for any terminating run of the program, if P holds
before then Q holds afterwards.

{a>3} b:=a+a {b>6}
{d>zAd >z} d:=dxd" {d>z%}
{true} while i>0doi:=i—1 {i <0}

Partial vs. Total

Partial: {P} C {Q} does not assert that C will terminate when started in a
state satisfying P, only that Q will hold if it does.

The alternative total triple [P] C [Q] does assert that C terminates, but in
practice methods for proving termination are often quite different to
methods for proving properties like Q.

Hypothetical: {P} C {Q} makes no claim that P actually will be true
when C is executed, only what will happen if it is.

Imprecise: {P} C {Q} may not include all that can be deduced about C.

For example, {true} C {true} is always valid, but rarely useful.

© Axioms, meaning and truth

Hoare rules

Hoare set out a number of rules for how to deduce triples.

{P} C{Q} {Q} C {R}
{P} skip {P} {P} GC' {R} {PIE/x]} x:=E {P}
{PA (B =true)} C {Q} {PA (B #true)} C' {Q}
{P} if B then Celse C' {Q}
{PA (B =true)} C {P}
{P} while B do C {P A (B # true)}
PP (P} C{Q) Q—Q
{P} C {Q}

Rules have also been proposed for several other programming language
features: concurrency, procedures, local variables, pointers,. ..

In fact, the last rule is not as strong as it might be, but this was not realised for several years.

See for example [Nipkow CSL 2002 §3] for some of the history.

Truth and beauty

We write F{P} C {Q} when a triple can be derived using the rules. But is
such a triple true? This depends on the meaning of C, its semantics.
Which is what, exactly?

@ Hoare proposed an axiomatic semantics: the derivable triples
F{P} C {Q} are what define the meaning of C.

@ An alternative is to define the behaviour of C separately, and write
E{P} C {Q} when a triple holds true in this other semantics.

There are various such ways to define the behaviour of C:
o Operational semantics: how one term executes to give another.
@ Denotational semantics maps programs into a mathematical domain.
@ An abstract machine executes steps in a simplified processor.

In all cases we then want to compare + (derived) with E (observed).

Operational semantics

An operational semantics here must track commands C and program
states S, where S(x) gives the value of variable x in state S.

@ A small-step semantics S, C — S’, C’ reduces programs little by little:

S, (aa=5;C) — S[a+ 5], C

@ A big-step semantics S, C |} S’ evaluates programs to a final state:

S, (i:=5;j:=1;while i>0 do (i:=i—1;j:=j%2)) |} S[i < 0,j « 32]

Either of these can themselves be defined by derivation rules, using the
approach of Structural Operational Semantics. [Plotkin 1981]

Soundness and completeness

Given a semantics, we can identify which triples are valid:

de
&,

F{P} C {Q} VS, T.(P(S)AS,CIT)— Q(T)

This gives a means to assess the derivation rules for triples:

Soundness Every derivable triple is valid:
P} C{Q} = E{P} C{Q}
Completeness Every valid triple can be derived using the rules:

F{P} C{Q} = H{P} C{Q}

Godel’s celebrated theorem tells us we can only hope for relative completeness in useful logics.

@ Applications

Reasoning and specification

Hoare logic supports quite general reasoning about imperative programs
and their behaviour. However, the two most common applications are:

Specification Stating what properties a program ought to have, either by
annotating existing code, or before any is written.

Verification Checking that a program does indeed have these desired
properties.

In practice, this means generalising pre- and postconditions to include:

Assertions about the state at some point within a program.
Loop invariants to hold at each repeat of a loop.
Object invariants that each method is to maintain.

Method constraints as pre- and postconditions on method invocation.

Hoare in verification tools

The general approach for Hoare-style formal verification tools is this:

@ A programmer annotates source code, or a library interface.

@ A tool analyses the code and attempts to show that all the assertions
given can be derived using the standard rules.

@ The tool may be able to do this unassisted.

e If not, it emits verification conditions, purely logical assertions that
need to be checked.

@ These may be passed on to an automated theorem prover, or some
other decision procedure.

@ In extreme cases verification conditions may not be solved
automatically and require interactive theorem proving by an expert or
the provision of extra hints.

Design by Contract™

Design by Contract™ (DBC) is a software design methodology promoted
by Bertrand Meyer and the Eijffel programming language.

DBC makes Hoare logic a vital component in program development,
strengthening it to the notion of a contract:

@ The precondition of a procedure imposes an obligation on any caller;

@ In return, the procedure must guarantee that the specified
postcondition will hold when it exits.

The contract also includes additional information such as side-effects,
invariants, and error conditions.

NB: this modifies the hypothetical aspect of Hoare logic, where a precondition is “supposing”

Lightweight Verification

Proving (and writing) arbitrary assertions can be arbitrarily difficult.

In lightweight verification things are simplified by focusing on standard
properties of common interest, rather than full functional correctness.

Exception freedom no uncaught exception is raised.
Arithmetic safety no arithmetic expression divides by zero or overflows.

Race freedom access to shared state does not conflict in different threads.

Standard properties are easy for the programmer to write, providing
shorthands for possibly complex logical expressions.

Standard properties can be easier for tools to handle, using ad hoc static
analyses or decidable fragments of logic.

If a tool cannot establish a property, the programmer may be able to add
additional annotations, or may have to rewrite the code.

© Closing

Homework

The next lecture will be on some tools for checking Java programs,
including those that apply Hoare Logic and DBC.
Before Friday, read the following two short articles:

@ Leavens and Cheon. Design by Contract with JML.

@ Burdy et al. An overview of JML tools and applications.

Both available from http://jmlspecs.org

Extra challenge activity: install and run JML or ESC/Java 2.

http://www.eecs.ucf.edu/~leavens/JML/jmldbc.pdf
http://www.jmlspecs.org/OldReleases/sttt04.pdf
http://jmlspecs.org

@ Runtime checking uses boolean assertions, assert in Java

@ Verification or static checking uses logical assertions with quantifiers
and

@ Hoare logic triples {P} C {Q} make logical assertions.

@ The soundness and completeness of Hoare reasoning can be tested
with respect to a program’s semantics.

@ Hoare assertions are used in specification to annotate programs and
libraries.

@ Tools can carry out automated verification against these assertions.
@ Design by Contract™ strengthens these into contracts.

@ In lightweight verification, the focus is on standard “goodness”
properties: expressed succinctly and widely understood.

	Runtime Assertions
	Logical Assertions
	Axioms, meaning and truth
	Applications
	Closing

