
http://www.inf.ed.ac.uk/teaching/courses/apl

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Advances in Programming Languages
APL12: Language Augmentations and Correctness

David Aspinall
(some slides by Ian Stark)

School of Informatics
The University of Edinburgh

Friday 5 November 2010
Semester 1 Week 7

http://www.inf.ed.ac.uk/teaching/courses/apl
http://www.ed.ac.uk
http://homepages.ed.ac.uk/da
http://www.inf.ed.ac.uk/~stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk


Topic: Augmented Languages for Correctness

The next three lectures will be about some language-based techniques and
tools for improving program quality, specifically:

Augmentations and Certifying Correctness

Assertions and Hoare Logic

Practical tools for Java Correctness

This first lecture sets the scene, introducing the idea of language
augmentations and describing their use in different forms of correctness
checking.
Detailed examples of programs augmented with correctness claims appear
in the next two lectures.



Outline

1 Augmented Programming

2 Certifying Correctness

3 Proof-Carrying Code

4 Certified Compilation

5 Summary



Outline

1 Augmented Programming

2 Certifying Correctness

3 Proof-Carrying Code

4 Certified Compilation

5 Summary



Programming Language Features vs Augmentations

A distinction (non-standard terminology):

language features are ways to determine behaviour
exceptions are a way of handling errors

language augmentations are ways to describe behaviour
Java’s throws declaration describes possible errors
Java’s @NonNull annotation suggests null isn’t allowed

Language features are realised by language extensions or libraries. Or
perhaps by meta-programming or DSLs.

Language augmentations may be realised by language extensions or
annotations, appearing as a language construct, formal comments, or
stored in auxiliary files.



Part of the language or not?

Question: is a static type system an augmentation or part of a
programming language?

An augmentation: static types in many languages do not affect the
meaning of programs. They are used to reduce the set of acceptable
programs to preclude undesirable behaviours.
For example, static typing usually ensures that well-typed programs do
not go wrong by adding an integer to a boolean.

Part of the language: sometimes a static type-system can affect the
meaning of a program. Then it is properly part of the language, as
programs without types may not have meanings.
For example, the ad-hoc polymorphism provided by Haskell type classes
causes code to be compiled differently for different types.



Part of the language or not?

Question: is a static type system an augmentation or part of a
programming language?

An augmentation: static types in many languages do not affect the
meaning of programs. They are used to reduce the set of acceptable
programs to preclude undesirable behaviours.
For example, static typing usually ensures that well-typed programs do
not go wrong by adding an integer to a boolean.

Part of the language: sometimes a static type-system can affect the
meaning of a program. Then it is properly part of the language, as
programs without types may not have meanings.
For example, the ad-hoc polymorphism provided by Haskell type classes
causes code to be compiled differently for different types.



Part of the language or not?

Question: is a static type system an augmentation or part of a
programming language?

An augmentation: static types in many languages do not affect the
meaning of programs. They are used to reduce the set of acceptable
programs to preclude undesirable behaviours.
For example, static typing usually ensures that well-typed programs do
not go wrong by adding an integer to a boolean.

Part of the language: sometimes a static type-system can affect the
meaning of a program. Then it is properly part of the language, as
programs without types may not have meanings.
For example, the ad-hoc polymorphism provided by Haskell type classes
causes code to be compiled differently for different types.



Augmentations for Correctness, Safety, Security, ...

Key characteristic: augmentations do not change the meaning of the
program. But they may be used to express properties of the program.
These properties may be checked by a compiler or other tools.

error behaviour
e.g., (runtime) exception freedom: no NullPointerException

resource usage
e.g., a method requires 50kb of heap space
... or takes time proportional to the length of its input list
... spawns at most 4 threads

functional correctness
e.g., the method Math.log(x) computes the natural logarithm ln(x)

Functional correctness is generally the most ambitious; the aim of formal
verification. Although by Rice’s theorem, the properties are most likely equivalent.



Outline

1 Augmented Programming

2 Certifying Correctness

3 Proof-Carrying Code

4 Certified Compilation

5 Summary



Verification at Different Levels

D
d //

c

��

D ′

��
I o

// I ′

checking design (or specification)
check that D satisfies some property

checking implementation
check that I has some behaviour

checking translations
check that refinement d preserves properties
check that compilation c preserves properties/behaviours
check that optimisation o preserves behaviours



Certifying Correctness

Certify. trans. To make (a thing) certain; to guarantee as certain,
attest in an authoritative manner; to give certain information of.

Various mechanisms are used to provide guarantees of checks performed to
show software correctness or suitability.

informal argument written in English
check-list of manually measured/assessed criteria
set of executable tests that are checked automatically
transcript of input and output to a verification system
a signature of an authority, analogue or digital
digital evidence, checked electronically



Certifying Correctness

Certify. trans. To make (a thing) certain; to guarantee as certain,
attest in an authoritative manner; to give certain information of.

Various mechanisms are used to provide guarantees of checks performed to
show software correctness or suitability.

informal argument written in English
check-list of manually measured/assessed criteria
set of executable tests that are checked automatically
transcript of input and output to a verification system
a signature of an authority, analogue or digital
digital evidence, checked electronically



Outline

1 Augmented Programming

2 Certifying Correctness

3 Proof-Carrying Code

4 Certified Compilation

5 Summary



Code signing: worth the bits?

Currently: we trust code based on authentication of its source.
I’ll trust updates to IE only if they’re signed by Microsoft.

Code signing is better than trusting unauthenticated code: digital
version of “shrink-wrapping”. But this trust is fallible:

Microsoft’s signing scheme may be compromised (this has actually
happened, by a infamous social engineering attack on Verisign),
More seriously, the code might not be secure anyway, if Microsoft fails
to program securely, or infection/corruption before signing (also
happened: MS accidently distributed Nimda virus with VS .NET!)

The problem is that we delegate trust to somebody else rather than
examining the code for ourselves. Instead, could we examine the code
ourselves to prove that it is secure?

that seems like hard work. . .
but if someone gives us the proofs, we can easily check them!

http://news.com.com/2100-1001-254586.html?legacy=cnet
http://news.com.com/2100-1001-935994.html


Proof-carrying Code

Ideally, we certify code not to its origin, but with a self-evident
guarantee of security, to capture exactly what we want.
The code is packaged together with the guarantee and shipped to the
code consumer (client).
The consumer checks:

1 the guarantee is correct
2 the guarantee ensures the local security property desired
3 the guarantee matches the code

If so, the code is safe to execute. Ex: what can go wrong?

This is the subject of research into proof-carrying code (PCC) and,
more generally, evidence-based security.
A form of evidence-based security (“lightweight PCC”) is used in
Java: the stack maps used in JVML since Java 1.6 (see JSR 202).



Proof-carrying Code

Ideally, we certify code not to its origin, but with a self-evident
guarantee of security, to capture exactly what we want.
The code is packaged together with the guarantee and shipped to the
code consumer (client).
The consumer checks:

1 the guarantee is correct
2 the guarantee ensures the local security property desired
3 the guarantee matches the code

If so, the code is safe to execute. Ex: what can go wrong?

This is the subject of research into proof-carrying code (PCC) and,
more generally, evidence-based security.
A form of evidence-based security (“lightweight PCC”) is used in
Java: the stack maps used in JVML since Java 1.6 (see JSR 202).



Proof-carrying Code

Ideally, we certify code not to its origin, but with a self-evident
guarantee of security, to capture exactly what we want.
The code is packaged together with the guarantee and shipped to the
code consumer (client).
The consumer checks:

1 the guarantee is correct
2 the guarantee ensures the local security property desired
3 the guarantee matches the code

If so, the code is safe to execute. Ex: what can go wrong?

This is the subject of research into proof-carrying code (PCC) and,
more generally, evidence-based security.
A form of evidence-based security (“lightweight PCC”) is used in
Java: the stack maps used in JVML since Java 1.6 (see JSR 202).



Proof-carrying Code: mechanism

Basic idea: give a mechanized proof that security properties are
met. The compiler and/or programmer adds annotations to the code
to express security-related invariants. These annotations become the
proof certificate that the code is safe, and can be efficiently checked.

In practice, the PCC protocol may allow for some negotiation to set
security policy.

It might also allow for the combination of cryptographic and proof
certificates.

Theoretical work of the LFCS institute in Informatics, Edinburgh,
dating from 80s–90s is being applied today in PCC.
Specifically, Logical Frameworks are used to explicitly represent
proofs, and Deliverables are the package of a program plus proof.



PCC Example: MRG – Mobile Resource Guarantees

Write programs in a custom high-level language Camelot, a
functional language with an OCaml-like syntax.
Camelot is compiled into Grail, a functional intermediate code, which
is isomorphic to a subset of JVML.
An abstract cost model for the JVM counts instructions and
measures stack and heap sizes.
Costs are calculated using a annotated operational semantics for
Grail, reflecting the expansion into JVML.
Camelot has a resource type inference system, which is used to
produce formal proofs automatically for a form of Hoare Logic.
The annotated semantics, logics, and meta-theorems have all been
formalised in Isabelle, and Isabelle proof scripts are used as a proof
transmission format.



Architecture of MRG

JVMLJVML

Grail
Grail

CertificateCertificate

Camelot Type system

Network

Contraction

Certificate Checker

Expansion

Certifying Compiler

JVM

Resource Policy
OK?



Camelot

Example program: insertion sort:
type iList = !Nil | Cons of int * iList
let ins a l =

match l with Nil -> Cons(a,Nil)
| Cons(x,t)@_ -> if a < x then Cons(a,Cons(x,t))

else Cons(x, ins a t)
let sort l =

match l with Nil -> Nil | Cons(a,t)@_ -> ins a (sort t)

The notation @_ indicates a destructive pattern match. This affects
the behaviour, but augmentations for cost accounting are available to
describe the resource usage and give hints to the resource analysis.
Compilation includes an explicit memory manager whose space usage
is inferred using a type system and program annotations.
Here: ins consumes one memory cell, independent from actual input,
sort does not consume any memory (in-place)
PCC certificate: the result of type inference is encoded in a program
logic for the compiled Grail code.



MRG demos

See:
MRG home page at http://groups.inf.ed.ac.uk/mrg/

MRG demo at http://projects.tcs.ifi.lmu.de/mrg/pcc4/index.php
usually working, sometimes goes down

http://groups.inf.ed.ac.uk/mrg/
http://projects.tcs.ifi.lmu.de/mrg/pcc4/index.php


PCC Example: Mobius — Mobility, Ubiquity and Security

An EU project 2004-2009 with 16 partners in 10 countries.
Started from a shared concept of proof-carrying code
Extended to gather in a range of types of digital evidence that
guarantee program behaviour.
proof based The certificate contains a proof which refers to bytecode

behaviour in a bytecode logic. A proof-checker checks
these.

type based The certificate contains typing annotations for a
specialised type system which extends Java typing and
guarantees a safety invariant. A type-checker checks the
annotations. Separately and offline, the type system is
proved correct.

abstract-interpretation based The certificate contains solutions for an
program analysis problem based on constraint solving.
The solution is checked to satisfy the constraints.



Mobius Demos

Video on YouTube

Search for “Mobius demo” or go to direct link
http://www.youtube.com/watch?v=4AYiwo4NQtE

Mobius Quiz (uses simulator)

See Ian’s pages at http://homepages.inf.ed.ac.uk/stark/mq/
currently partially working, may be fixed soon

http://www.youtube.com/watch?v=4AYiwo4NQtE
http://homepages.inf.ed.ac.uk/stark/mq/


Possible future: Trustworthy Apps

Software
Developers

App
Store Users

Digital evidence flows around the Trustworthy App Store network
architecture:

From store to user, evidence to satisfy security/resource policy
From store to developer, stating objective acceptance policies
From developer to store, providing evidence to meet these

credit: this slide is due to Ian Stark



Outline

1 Augmented Programming

2 Certifying Correctness

3 Proof-Carrying Code

4 Certified Compilation

5 Summary



Compiler correctness

Compiler correctness is an old example of the translation correctness
problem. Modernly, two viewpoints:

theoretical folk
Compilers are complicated pieces of code.
We rely on them, but they are buggy.

Like other complicated pieces of code we ought to verify that they do
what is intended, and fix them if they don’t.

compiler folk

Compilers are very complicated pieces of code.
We rely on them and they are buggy. But that’s life.
The underlying hardware also has bugs. There haven’t been any verified
CPU cores since the 1980s. We just hope the bugs are rare, and only
use old CPU architectures for controling nuclear power stations.



Compiler correctness

Compiler correctness is an old example of the translation correctness
problem. Modernly, two viewpoints:

theoretical folk
Compilers are complicated pieces of code.
We rely on them, but they are buggy.
Like other complicated pieces of code we ought to verify that they do
what is intended, and fix them if they don’t.

compiler folk

Compilers are very complicated pieces of code.
We rely on them and they are buggy. But that’s life.
The underlying hardware also has bugs. There haven’t been any verified
CPU cores since the 1980s. We just hope the bugs are rare, and only
use old CPU architectures for controling nuclear power stations.



Compiler correctness

Compiler correctness is an old example of the translation correctness
problem. Modernly, two viewpoints:

theoretical folk
Compilers are complicated pieces of code.
We rely on them, but they are buggy.
Like other complicated pieces of code we ought to verify that they do
what is intended, and fix them if they don’t.

compiler folk

Compilers are very complicated pieces of code.
We rely on them and they are buggy. But that’s life.

The underlying hardware also has bugs. There haven’t been any verified
CPU cores since the 1980s. We just hope the bugs are rare, and only
use old CPU architectures for controling nuclear power stations.



Compiler correctness

Compiler correctness is an old example of the translation correctness
problem. Modernly, two viewpoints:

theoretical folk
Compilers are complicated pieces of code.
We rely on them, but they are buggy.
Like other complicated pieces of code we ought to verify that they do
what is intended, and fix them if they don’t.

compiler folk

Compilers are very complicated pieces of code.
We rely on them and they are buggy. But that’s life.
The underlying hardware also has bugs. There haven’t been any verified
CPU cores since the 1980s. We just hope the bugs are rare, and only
use old CPU architectures for controling nuclear power stations.



Piecemeal Verification: Translation Validation

The idea of translation validation is rather than to verify a whole
compiler, check that individual compilations (or individual
optimisation steps) actually performed are correct.
This relaxes the requirement that the compiler is globally correct.
The compiler checks that it has produced the right result each time.
Some input programs may produce errors or trigger compiler bugs;
validations cannot be produced for these programs.

See:
Amir Pnueli, Michael Siegel and Eli Singerman. Translation Validation,
TACAS ’98. http://portal.acm.org/citation.cfm?id=691453

George C. Necula. Translation validation for an optimizing compiler,
SIGPLAN Notices, 35/5, 2000.
http://doi.acm.org/10.1145/358438.349314.

http://portal.acm.org/citation.cfm?id=691453
http://doi.acm.org/10.1145/358438.349314


Compcert: Compiler Verification Revisited

Compcert (developed at Inria in Paris, France) uses Clight, a subset
of C. Compilation is to a real architecture, PowerPC, and with a
realistic optimisation level.
Notion of correctness is formally established:

If S is safe, then for all behaviours B, if a compiled program C has
behaviour B then the source program S has behaviour B too.

where safe means “does not go wrong”.
14 stages through 7 intermediate representations, including register
allocation, instruction scheduling, layout of stack frames, etc.
Formal proofs are carried out in the Coq interactive proof assistant
The compiler itself is coded directly in a pure functional way inside
Coq’s logic, simplifying reasoning (no Hoare logic is needed)
The code can be extracted to a speedy OCaml program.
The complete work is available as commented source code at
http://compcert.inria.fr/.

http://compcert.inria.fr/


Outline

1 Augmented Programming

2 Certifying Correctness

3 Proof-Carrying Code

4 Certified Compilation

5 Summary



Summary: Augmentation and Correctness

Language augmentations

Augmentations are formal extensions or additions to programs, which
express properties about programs but do not affect their behaviours.
They may be exploited by the language compiler and/or auxiliary tools.

Correctness approaches

program verification: checking a program meets its specification
proof-carrying code: program verification with electronic evidence
translation validation: checking particular translations are correct
compiler verification: checking that a compiler translates correctly

Example research projects and tools: MRG, Mobius, Compcert.



Reading before next week

Foundations of formal verification: Hoare logic

You should review predicate calculus and logic notation

P ∧ Q P ∨ Q P → Q ¬P

∀x.P ∃x.P

Practical languages for verification: JML and ESC/Java 2
First you should understand the dynamic analogue, runtime checking
with assertions. Read the Java assertions tutorial at:
http:
//download.oracle.com/javase/1.4.2/docs/guide/lang/assert.html

http://download.oracle.com/javase/1.4.2/docs/guide/lang/assert.html
http://download.oracle.com/javase/1.4.2/docs/guide/lang/assert.html

	Augmented Programming
	Certifying Correctness
	Proof-Carrying Code
	Certified Compilation
	Summary

