
http://www.inf.ed.ac.uk/teaching/courses/apl

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Advances in Programming Languages
APL1: What’s so important about language?

Ian Stark and David Aspinall

School of Informatics
The University of Edinburgh

Tuesady 21 September 2010
Semester 1 Week 1

http://www.inf.ed.ac.uk/teaching/courses/apl
http://www.ed.ac.uk
http://homepages.ed.ac.uk/stark
http://homepages.ed.ac.uk/da
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

Vital Statistics

Course: Advances in Programming Languages

Lecturers: Ian Stark and David Aspinall

Level: 10-credit level 10, for undergraduate year 4 and MSc students

When: 10am–11am Tuesday & Friday

Where: William Robertson Building G.02

Web: http://www.inf.ed.ac.uk/teaching/courses/apl

Blog: http://blob.inf.ed.ac.uk/aplcourse

Ian Stark APL1 2010-09-21

http://www.inf.ed.ac.uk/teaching/courses/apl
http://blob.inf.ed.ac.uk/aplcourse

What it is about computers?

Scale

Nanometres, terabytes, gigahertz, megabits/second; the internet,
lifebits and data smelters.

Digitization

Analogue paper, images, film, music, sound; printers, cameras,
telephones, copiers; all now just bits.

Programmability

The computer is protean, capable of assuming many forms.

All three are significant, but are mutually dependent for their effectiveness.

Ian Stark APL1 2010-09-21

What it is about computers?

Scale

Nanometres, terabytes, gigahertz, megabits/second; the internet,
lifebits and data smelters.

Digitization

Analogue paper, images, film, music, sound; printers, cameras,
telephones, copiers; all now just bits.

Programmability

The computer is protean, capable of assuming many forms.

All three are significant, but are mutually dependent for their effectiveness.

Ian Stark APL1 2010-09-21

What it is about computers?

Scale

Nanometres, terabytes, gigahertz, megabits/second; the internet,
lifebits and data smelters.

Digitization

Analogue paper, images, film, music, sound; printers, cameras,
telephones, copiers; all now just bits.

Programmability

The computer is protean, capable of assuming many forms.

All three are significant, but are mutually dependent for their effectiveness.

Ian Stark APL1 2010-09-21

What it is about computers?

Scale

Nanometres, terabytes, gigahertz, megabits/second; the internet,
lifebits and data smelters.

Digitization

Analogue paper, images, film, music, sound; printers, cameras,
telephones, copiers; all now just bits.

Programmability

The computer is protean, capable of assuming many forms.

All three are significant, but are mutually dependent for their effectiveness.
Ian Stark APL1 2010-09-21

Easy Exercises

1 Write down three programming languages.

2 Write down three language paradigms or characteristics.

3 Write down three reasons to choose a particular language.

Ian Stark APL1 2010-09-21

What matters in a programming language?

We might like a language that is:

Easy to learn, quick to write, expressive, concise, powerful, supported,
well-provided with libraries, cheap, popular, . . .

It might help us to write programs that are:

Readable, correct, fast, reliable, predictable, maintainable, secure,
robust, portable, testable, verifiable, composable, . . .

It might help us address challenges in:

Multicore architectures, distributed computing, warehouse-scale
computation, programming the web, quantum computing, . . .

Ian Stark APL1 2010-09-21

Shaping the conceivable

Languages frame the way we think, and the programs we can imagine.

Sapir-Whorf Hypothesis
We dissect nature along lines laid down by our native language

This claim is not without controversy; both in its original domain of linguis-
tics, and as more recently applied to programming languages.

Wittgenstein: The limits of my language mean the limits of my world
[Tractatus Logico-Philosophicus, 1922]

Orwell: The purpose of Newspeak was not only to provide a medium of
expression for the world-view and mental habits proper to the devotees of
Ingsoc, but to make all other modes of thought impossible [1984, 1949]

Perlis: A language that doesn’t affect the way you think about
programming, is not worth knowing [Epigrams on Programming, 1982]

Ian Stark APL1 2010-09-21

Shaping the conceivable

Languages frame the way we think, and the programs we can imagine.

Sapir-Whorf Hypothesis
We dissect nature along lines laid down by our native language

Boole: Language is an instrument of human reason, not merely a medium
for the expression of thought [An Investigation of the Laws of Thought, 1854]

Wittgenstein: The limits of my language mean the limits of my world
[Tractatus Logico-Philosophicus, 1922]

Orwell: The purpose of Newspeak was not only to provide a medium of
expression for the world-view and mental habits proper to the devotees of
Ingsoc, but to make all other modes of thought impossible [1984, 1949]

Perlis: A language that doesn’t affect the way you think about
programming, is not worth knowing [Epigrams on Programming, 1982]

Ian Stark APL1 2010-09-21

Shaping the conceivable

Languages frame the way we think, and the programs we can imagine.

Sapir-Whorf Hypothesis
We dissect nature along lines laid down by our native language

Boole: Language is an instrument of human reason, not merely a medium
for the expression of thought [An Investigation of the Laws of Thought, 1854]

Wittgenstein: The limits of my language mean the limits of my world
[Tractatus Logico-Philosophicus, 1922]

Orwell: The purpose of Newspeak was not only to provide a medium of
expression for the world-view and mental habits proper to the devotees of
Ingsoc, but to make all other modes of thought impossible [1984, 1949]

Perlis: A language that doesn’t affect the way you think about
programming, is not worth knowing [Epigrams on Programming, 1982]

Ian Stark APL1 2010-09-21

Shaping the conceivable

Languages frame the way we think, and the programs we can imagine.

Sapir-Whorf Hypothesis
We dissect nature along lines laid down by our native language

Boole: Language is an instrument of human reason, not merely a medium
for the expression of thought [An Investigation of the Laws of Thought, 1854]

Wittgenstein: The limits of my language mean the limits of my world
[Tractatus Logico-Philosophicus, 1922]

Orwell: The purpose of Newspeak was not only to provide a medium of
expression for the world-view and mental habits proper to the devotees of
Ingsoc, but to make all other modes of thought impossible [1984, 1949]

Perlis: A language that doesn’t affect the way you think about
programming, is not worth knowing [Epigrams on Programming, 1982]

Ian Stark APL1 2010-09-21

Shaping the conceivable

Languages frame the way we think, and the programs we can imagine.

Sapir-Whorf Hypothesis
We dissect nature along lines laid down by our native language

Boole: Language is an instrument of human reason, not merely a medium
for the expression of thought [An Investigation of the Laws of Thought, 1854]

Wittgenstein: The limits of my language mean the limits of my world
[Tractatus Logico-Philosophicus, 1922]

Orwell: The purpose of Newspeak was not only to provide a medium of
expression for the world-view and mental habits proper to the devotees of
Ingsoc, but to make all other modes of thought impossible [1984, 1949]

Perlis: A language that doesn’t affect the way you think about
programming, is not worth knowing [Epigrams on Programming, 1982]

Ian Stark APL1 2010-09-21

That’s a bit philosophical

Does this really happen? Can programming languages help us write new
kinds of program? Or even manage to stop us from writing bad ones?

LISP S-expressions, metaprogramming, treating code as data.

Higher-order functions. For example, parser combinators:

expr = (expr ‘then‘ opn ‘then‘ expr) ‘or‘ term
opn = (char ’+’) ‘or‘ (char ’-’)
term = ...

Objects: packaging private state with methods to act on it.

Laziness for infinite datastructures:

odds = 3 : map (+2) odds
fibs = 1 : 1 : [a+b | (a,b) <- zip fibs (tail fibs)]

[Your suggestion here. . .]

Ian Stark APL1 2010-09-21

That’s a bit philosophical

Does this really happen? Maybe.

LISP S-expressions, metaprogramming, treating code as data.

Higher-order functions. For example, parser combinators:

expr = (expr ‘then‘ opn ‘then‘ expr) ‘or‘ term
opn = (char ’+’) ‘or‘ (char ’-’)
term = ...

Objects: packaging private state with methods to act on it.

Laziness for infinite datastructures:

odds = 3 : map (+2) odds
fibs = 1 : 1 : [a+b | (a,b) <- zip fibs (tail fibs)]

[Your suggestion here. . .]

Ian Stark APL1 2010-09-21

Properties

One of the defining feature of computers is that they are programmable.

Programmability means that computers can always do more. Best of all,
you can program new ways to program.

Turing writing about the Automatic Computing Engine ACE:

Instruction tables will have to be made up by mathematicians with
computing experience and perhaps a certain puzzle-solving ability.
There will probably be a good deal of work of this kind to be done, ...
This process of constructing instruction tables should be very
fascinating. There need be no real danger of it ever becoming a
drudge, for any processes that are quite mechanical may be turned over
to the machine itself.

[Proposed Electronic Calculator, 1945]

That is:
If you don’t like the computer you have, you can create a better one

[Miller, LtU, 2009-05-11]

Ian Stark APL1 2010-09-21

http://lambda-the-ultimate.org/node/3312#comment-48571

Properties

One of the defining feature of computers is that they are programmable.

Programmability means that computers can always do more. Best of all,
you can program new ways to program.

Turing writing about the Automatic Computing Engine ACE:

Instruction tables will have to be made up by mathematicians with
computing experience and perhaps a certain puzzle-solving ability.
There will probably be a good deal of work of this kind to be done, ...

This process of constructing instruction tables should be very
fascinating. There need be no real danger of it ever becoming a
drudge, for any processes that are quite mechanical may be turned over
to the machine itself.

[Proposed Electronic Calculator, 1945]

That is:
If you don’t like the computer you have, you can create a better one

[Miller, LtU, 2009-05-11]

Ian Stark APL1 2010-09-21

http://lambda-the-ultimate.org/node/3312#comment-48571

Properties

One of the defining feature of computers is that they are programmable.

Programmability means that computers can always do more. Best of all,
you can program new ways to program.

Turing writing about the Automatic Computing Engine ACE:

Instruction tables will have to be made up by mathematicians with
computing experience and perhaps a certain puzzle-solving ability.
There will probably be a good deal of work of this kind to be done, ...
This process of constructing instruction tables should be very
fascinating. There need be no real danger of it ever becoming a
drudge, for any processes that are quite mechanical may be turned over
to the machine itself.

[Proposed Electronic Calculator, 1945]

That is:
If you don’t like the computer you have, you can create a better one

[Miller, LtU, 2009-05-11]

Ian Stark APL1 2010-09-21

http://lambda-the-ultimate.org/node/3312#comment-48571

Properties

One of the defining feature of computers is that they are programmable.

Programmability means that computers can always do more. Best of all,
you can program new ways to program.

Turing writing about the Automatic Computing Engine ACE:

Instruction tables will have to be made up by mathematicians with
computing experience and perhaps a certain puzzle-solving ability.
There will probably be a good deal of work of this kind to be done, ...
This process of constructing instruction tables should be very
fascinating. There need be no real danger of it ever becoming a
drudge, for any processes that are quite mechanical may be turned over
to the machine itself.

[Proposed Electronic Calculator, 1945]

That is:
If you don’t like the computer you have, you can create a better one

[Miller, LtU, 2009-05-11]

Ian Stark APL1 2010-09-21

http://lambda-the-ultimate.org/node/3312#comment-48571

Abstraction

The concept of abstraction adds significant power to programmability.

Abstractions build upon each other: bytes, strings, arrays, matrices

, lists,
maps, trees, pointers, files, sockets, objects, databases, instructions,
procedures, functions, threads, agents, behaviours, . . .

Abstraction frees up you to think about other things, and you should. Let
the machine get on with its job.

Whitehead: Civilization advances by extending the number of important
operations which we can perform without thinking about them.
Operations of thought are like cavalry charges in a battle — they are
strictly limited in number, they require fresh horses, and must only be
made at decisive moments. [Introduction to Mathematics, 1911]

Ian Stark APL1 2010-09-21

Abstraction

The concept of abstraction adds significant power to programmability.

Abstractions build upon each other: bytes, strings, arrays, matrices, lists,
maps, trees

, pointers, files, sockets, objects, databases, instructions,
procedures, functions, threads, agents, behaviours, . . .

Abstraction frees up you to think about other things, and you should. Let
the machine get on with its job.

Whitehead: Civilization advances by extending the number of important
operations which we can perform without thinking about them.
Operations of thought are like cavalry charges in a battle — they are
strictly limited in number, they require fresh horses, and must only be
made at decisive moments. [Introduction to Mathematics, 1911]

Ian Stark APL1 2010-09-21

Abstraction

The concept of abstraction adds significant power to programmability.

Abstractions build upon each other: bytes, strings, arrays, matrices, lists,
maps, trees, pointers, files, sockets, objects, databases

, instructions,
procedures, functions, threads, agents, behaviours, . . .

Abstraction frees up you to think about other things, and you should. Let
the machine get on with its job.

Whitehead: Civilization advances by extending the number of important
operations which we can perform without thinking about them.
Operations of thought are like cavalry charges in a battle — they are
strictly limited in number, they require fresh horses, and must only be
made at decisive moments. [Introduction to Mathematics, 1911]

Ian Stark APL1 2010-09-21

Abstraction

The concept of abstraction adds significant power to programmability.

Abstractions build upon each other: bytes, strings, arrays, matrices, lists,
maps, trees, pointers, files, sockets, objects, databases, instructions,
procedures, functions, threads, agents, behaviours, . . .

Abstraction frees up you to think about other things, and you should. Let
the machine get on with its job.

Whitehead: Civilization advances by extending the number of important
operations which we can perform without thinking about them.
Operations of thought are like cavalry charges in a battle — they are
strictly limited in number, they require fresh horses, and must only be
made at decisive moments. [Introduction to Mathematics, 1911]

Ian Stark APL1 2010-09-21

Abstraction

The concept of abstraction adds significant power to programmability.

Abstractions build upon each other: bytes, strings, arrays, matrices, lists,
maps, trees, pointers, files, sockets, objects, databases, instructions,
procedures, functions, threads, agents, behaviours, . . .

Abstraction frees up you to think about other things, and you should. Let
the machine get on with its job.

Whitehead: Civilization advances by extending the number of important
operations which we can perform without thinking about them.
Operations of thought are like cavalry charges in a battle — they are
strictly limited in number, they require fresh horses, and must only be
made at decisive moments. [Introduction to Mathematics, 1911]

Ian Stark APL1 2010-09-21

Abstraction

The concept of abstraction adds significant power to programmability.

Abstractions build upon each other: bytes, strings, arrays, matrices, lists,
maps, trees, pointers, files, sockets, objects, databases, instructions,
procedures, functions, threads, agents, behaviours, . . .

Abstraction frees up you to think about other things, and you should. Let
the machine get on with its job.

Whitehead: Civilization advances by extending the number of important
operations which we can perform without thinking about them.

Operations of thought are like cavalry charges in a battle — they are
strictly limited in number, they require fresh horses, and must only be
made at decisive moments. [Introduction to Mathematics, 1911]

Ian Stark APL1 2010-09-21

Abstraction

The concept of abstraction adds significant power to programmability.

Abstractions build upon each other: bytes, strings, arrays, matrices, lists,
maps, trees, pointers, files, sockets, objects, databases, instructions,
procedures, functions, threads, agents, behaviours, . . .

Abstraction frees up you to think about other things, and you should. Let
the machine get on with its job.

Whitehead: Civilization advances by extending the number of important
operations which we can perform without thinking about them.
Operations of thought are like cavalry charges in a battle — they are
strictly limited in number, they require fresh horses, and must only be
made at decisive moments. [Introduction to Mathematics, 1911]

Ian Stark APL1 2010-09-21

What’s in the course?

The lectures will cover five sample areas of “advances in programming
languages”:

Programming for concurrent code
Types and Classes in Haskell
LINQ and cross-language integration in .NET
Augmented languages for correctness and certification
Bidirectional programming

Lectures also specify reading and exercises on the topics covered. This
homework is not assessed, but it is essential in order to fully participate in
the course.

There is substantial piece of written coursework which contributes 20% of
students’ course grade. This requires investigation of a topic in
programming languages and writing a 10-page report with example code.

Ian Stark APL1 2010-09-21

Time plan

Week 1 Tuesday 21 September Friday 24 September
Week 2 Tuesday 28 September Friday 1 October
Week 3 Tuesday 5 October Friday 8 October
Week 4 Tuesday 12 October Friday 15 October
Week 5 Tuesday 19 October Friday 22 October
Week 6 Tuesday 26 October Friday 29 October
Week 7 Tuesday 2 November Friday 5 November
Week 8 Tuesday 9 November Friday 12 November
Week 9 Tuesday 16 November Friday 19 November
Week 10 Tuesday 23 November Friday 26 November
Week 11 Tuesday 30 November Friday 3 December

This gives slots.

The lecture on Friday week will be about the coursework investigation: by
then you should have read about the topics available.

You must choose a topic by the end of Week 3, with the final report by
the end of Week 8.

Ian Stark APL1 2010-09-21

Time plan

Week 1 Tuesday 21 September Friday 24 September
Week 2 Tuesday 28 September Friday 1 October
Week 3 Tuesday 5 October Friday 8 October
Week 4 Tuesday 12 October Friday 15 October
Week 5 Tuesday 19 October Friday 22 October
Week 6 Tuesday 26 October Friday 29 October
Week 7 Tuesday 2 November Friday 5 November
Week 8 Tuesday 9 November Friday 12 November
Week 9 Tuesday 16 November Friday 19 November
Week 10 Tuesday 23 November Friday 26 November
Week 11 Tuesday 30 November Friday 3 December

This gives 22 slots.

The lecture on Friday week will be about the coursework investigation: by
then you should have read about the topics available.

You must choose a topic by the end of Week 3, with the final report by
the end of Week 8.

Ian Stark APL1 2010-09-21

Time plan

Week 1 Tuesday 21 September Friday 24 September
Week 2 Tuesday 28 September Friday 1 October
Week 3 Tuesday 5 October Friday 8 October
Week 4 Tuesday 12 October Friday 15 October
Week 5 Tuesday 19 October Friday 22 October
Week 6 Tuesday 26 October Friday 29 October
Week 7 Tuesday 2 November Friday 5 November
Week 8 Tuesday 9 November Friday 12 November
Week 9 Tuesday 16 November Friday 19 November
Week 10 Tuesday 23 November Friday 26 November
Week 11 Tuesday 30 November Friday 3 December

This gives 20 slots.

The lecture on Friday week will be about the coursework investigation: by
then you should have read about the topics available.

You must choose a topic by the end of Week 3, with the final report by
the end of Week 8.

Ian Stark APL1 2010-09-21

Time plan

Week 1 Tuesday 21 September Friday 24 September
Week 2 Tuesday 28 September Friday 1 October
Week 3 Tuesday 5 October Friday 8 October
Week 4 Tuesday 12 October Friday 15 October
Week 5 Tuesday 19 October Friday 22 October
Week 6 Tuesday 26 October Friday 29 October
Week 7 Tuesday 2 November Friday 5 November
Week 8 Tuesday 9 November Friday 12 November
Week 9 Tuesday 16 November Friday 19 November
Week 10 Tuesday 23 November Friday 26 November
Week 11 Tuesday 30 November Friday 3 December

This gives 18 slots, with a coursework week.

The lecture on Friday week will be about the coursework investigation: by
then you should have read about the topics available.

You must choose a topic by the end of Week 3, with the final report by
the end of Week 8.

Ian Stark APL1 2010-09-21

Time plan

Week 1 Tuesday 21 September Friday 24 September
Week 2 Tuesday 28 September Friday 1 October
Week 3 Tuesday 5 October Friday 8 October
Week 4 Tuesday 12 October Friday 15 October
Week 5 Tuesday 19 October Friday 22 October
Week 6 Tuesday 26 October Friday 29 October
Week 7 Tuesday 2 November Friday 5 November
Week 8 Tuesday 9 November Friday 12 November
Week 9 Tuesday 16 November Friday 19 November
Week 10 Tuesday 23 November Friday 26 November
Week 11 Tuesday 30 November Friday 3 December

This gives 18 slots, with a coursework week.

The lecture on Friday week will be about the coursework investigation: by
then you should have read about the topics available.

You must choose a topic by the end of Week 3, with the final report by
the end of Week 8.

Ian Stark APL1 2010-09-21

Time plan

Week 1 Tuesday 21 September Friday 24 September
Week 2 Tuesday 28 September Friday 1 October
Week 3 Tuesday 5 October Friday 8 October
Week 4 Tuesday 12 October Friday 15 October
Week 5 Tuesday 19 October Friday 22 October
Week 6 Tuesday 26 October Friday 29 October
Week 7 Tuesday 2 November Friday 5 November
Week 8 Tuesday 9 November Friday 12 November
Week 9 Tuesday 16 November Friday 19 November
Week 10 Tuesday 23 November Friday 26 November
Week 11 Tuesday 30 November Friday 3 December

This gives 18 slots, with a coursework week.

The lecture on Friday week will be about the coursework investigation: by
then you should have read about the topics available.

You must choose a topic by the end of Week 3,

with the final report by
the end of Week 8.

Ian Stark APL1 2010-09-21

Time plan

Week 1 Tuesday 21 September Friday 24 September
Week 2 Tuesday 28 September Friday 1 October
Week 3 Tuesday 5 October Friday 8 October
Week 4 Tuesday 12 October Friday 15 October
Week 5 Tuesday 19 October Friday 22 October
Week 6 Tuesday 26 October Friday 29 October
Week 7 Tuesday 2 November Friday 5 November
Week 8 Tuesday 9 November Friday 12 November
Week 9 Tuesday 16 November Friday 19 November
Week 10 Tuesday 23 November Friday 26 November
Week 11 Tuesday 30 November Friday 3 December

This gives 18 slots, with a coursework week.

The lecture on Friday week will be about the coursework investigation: by
then you should have read about the topics available.

You must choose a topic by the end of Week 3, with the final report by
the end of Week 8.

Ian Stark APL1 2010-09-21

Communication

Web http://www.inf.ed.ac.uk/teaching/courses/apl/

The course web page gives basic information, and through the semester
will carry lecture slides, details of coursework and exams.

Lecturers
The most effective way to contact either lecturer is by personal email,
from your University email address. However, many questions are even
better posed through comments on the course blog.
The mailing list apl-students@inf.ed.ac.uk reaches all APL students and
staff. Check http://lists.inf.ed.ac.uk/ to see that you are listed correctly.

Blog http://blob.inf.ed.ac.uk/aplcourse/

You should read the course blog. It carries the lecture log, slides, and
information about homework exercises.
You can add comments, and respond to the questions of others. Please do.

Ian Stark APL1 2010-09-21

http://www.inf.ed.ac.uk/teaching/courses/apl/
mailto:apl-students@inf.ed.ac.uk
http://lists.inf.ed.ac.uk/mailman/listinfo/apl-students
http://blob.inf.ed.ac.uk/aplcourse/

Crystal ball gazing

Some areas to watch, and possible drivers of future language design:

Multicore
Weak memory models
General-purpose computing on GPUs, FPGAs
Warehouse-scale computing and upwards
{Cloud,mobile,web} computing
Dynamic languages
Certified compilation
Quantum computing

Don’t take this too seriously: some of these have been on the “soon to be
hot” list for decades. What would you put on your list? What’s next?

See Nature 429:423–429; and Venter’s Synthia

Ian Stark APL1 2010-09-21

Crystal ball gazing

Some areas to watch, and possible drivers of future language design:

Multicore
Weak memory models
General-purpose computing on GPUs, FPGAs
Warehouse-scale computing and upwards
{Cloud,mobile,web} computing
Dynamic languages
Certified compilation
Quantum computing

Don’t take this too seriously: some of these have been on the “soon to be
hot” list for decades. What would you put on your list? What’s next?

See Nature 429:423–429; and Venter’s Synthia

Ian Stark APL1 2010-09-21

Homework

The next lecture is at 10am on Friday. It’s about programming for
concurrency. Before then:

1 Read the Wikipedia article on History of programming languages.
(If you find it’s missing something, fix that.)

2 Pick a programming language, and find out what support (if any) it
offers for concurrency.

Then post a brief comment on the blog entry for this lecture
describing what you have found out.

Try to avoid duplication — and no more than one language each,
leave some for others.

3 Find out about the Blub Paradox.

Ian Stark APL1 2010-09-21

http://en.wikipedia.org/wiki/History_of_programming_languages

The Secret Agenda of the Functional Illuminati
All advances in the design of mainstream programming languages

shall arise from existing functional languages.
Everything necessary can be found by contemplation of ML or Haskell.

The exceptionally adept may already discern all these in LISP.

3 Automatic memory management (everywhere these days)
3 Exceptions (ditto)
3 Parametric polymorphism (see Java/C# generics)
3 Implicit pointers (any OO language)
3 First-class functions (C# delegates)
3 Immutable values (see Java string)
3 Closures (lambdas in C#, Visual Basic 9, maybe C, Java 7?)
? Algebraic datatypes (still trying, but see Scala)
? First-class continuations (. . .)

	Opening
	Computing
	Languages
	Programmability
	Administration

