
http://www.inf.ed.ac.uk/teaching/courses/apl

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Advances in Programming Languages
APL8: Multiparameter Type Classes, Constructor Classes

Ian Stark

School of Informatics
The University of Edinburgh

Thursday 4 February
Semester 2 Week 4

http://www.inf.ed.ac.uk/teaching/courses/apl
http://www.ed.ac.uk
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

Foreword

Some Types in Haskell

This is the second of four lectures about some features of types and typing
in Haskell types, specifically:

Type classes

Multiparameter type classes, constructor classes,

Monads and interaction with the outside world

Encapsulating stateful computation

Ian Stark APL8 2010-02-04

Foreword

Some Types in Haskell

This is the second of four lectures about some features of types and typing
in Haskell types, specifically:

Type classes

Multiparameter type classes, constructor classes,

Monads and interaction with the outside world

Encapsulating stateful computation

Ian Stark APL8 2010-02-04

Outline

1 Type Classes

2 People

3 Multiparameter Type Classes

4 Constructor Classes

5 Others

6 Closing

Ian Stark APL8 2010-02-04

Parametric Polymorphism

Haskell makes extensive use of parametric polymorphism

reverse :: [a] −> [a]

> reverse [1,2,3]
[3,2,1]

> reverse [True,False]
[False,True]

> reverse "Edinburgh"
"hgrubnidE"

The polymorphic function reverse here must use nothing at all specific
about the type ‘a’ being handled.

Ian Stark APL8 2010-02-04

Qualified Polymorphism

The introduction of type classes refine this so functions can make
assumptions about the operations available on values.

revShow :: Show a => [a] −> [String]
revShow = reverse . map show

> revShow [1,2,3]
["3","2","1"]

> revShow [1.2,3.4,5.6]
["5.6","3.4","1.2"]

> revShow "abc"
["’c’","’b’","’a’"]

This resembles method dispatch and OO-style polymorphism, but they are
not the same: although different lists passed to revShow may contain dif-
ferent types, each list must carry only elements of a single type.

Homogeneous collections, not heterogeneous

Ian Stark APL8 2010-02-04

Qualified Polymorphism

The introduction of type classes refine this so functions can make
assumptions about the operations available on values.

revShow :: Show a => [a] −> [String]
revShow = reverse . map show

> revShow [1,2,3]
["3","2","1"]

> revShow [1.2,3.4,5.6]
["5.6","3.4","1.2"]

> revShow "abc"
["’c’","’b’","’a’"]

On the other hand, this does allow bulk operations like
maximum, minimum :: (Ord a) => [a] −> a

which caused such problems for the Java type system.

Ian Stark APL8 2010-02-04

Multiple Classes

Polymorphic values may use more than one class qualification:

showMax :: (Ord a, Show a) => [a] −> String
showMax = show . maximum

> showMax [1,2,3]
"3"

> showMax "Edinburgh"
"’u’"

> showMax ["Advances","Programming","Languages"]
"\"Programming\""

Ian Stark APL8 2010-02-04

Subclassing

Adding qualifications to class declarations introduces subclassing:

class (Eq a) => Ord a where
compare :: a −> a −> Ordering
(<), (<=), (>=), (>) :: a −> a −> Bool
max, min :: a −> a −> a

So every Ord type is also an Eq type: but note that this is subclassing not
subtyping.

Ian Stark APL8 2010-02-04

Multiway Subclassing

Classes may depend on more
than one superclass; including
diamonds of related classes.

Ian Stark APL8 2010-02-04

Nested Instances

class Reportable a where
report :: a −> String

instance Reportable Integer where
report i = show i

instance Reportable Char where
report c = [c]

instance Reportable a => Reportable [a] where
report xs = "[" ++ intercalate "," (map report xs) ++ "]"

instance (Reportable a, Reportable b) => Reportable (a,b) where
report (x,y) = "(" ++ report x ++ "," ++ report y ++ ")"

> report [(1,’a ’),(2,’b’)]
"[(1,a),(2,b)]"

Building concrete instances like Reportable [(a,b)] may require some
search by the compiler. (instance declarations ≈ mini logic programming)

Ian Stark APL8 2010-02-04

Code Inheritance

Classes declarations may carry code that is inherited by all types of that
class.

class Eq a where
(==), (/=) :: a −> a −> Bool

x /= y = not (x == y)
x == y = not (x /= y)

Instances of Eq may provide ==, or /=, or both.

Types may draw code from multiple classes, as with OO traits and mixins.

Ian Stark APL8 2010-02-04

Multimethods

Polymorphic qualification need not be determined by a single “primary”
value.

(++) :: [a] −> [a] −> [a]

left x = "Before" ++ x

right y = y ++ [3,4,5]

both x y = (x ++ y) :: [Float]

This answers the “binary method problem” in a similar way to OO
multiple dispatch.

Ian Stark APL8 2010-02-04

Typing by Result

Resolving which instance of a method to use may even be done without
any arguments at all:

maxBound :: (Bounded a) => a

Instance by result is used to overload numeric constants. The definition

raise x = x + 5

is expanded by the compiler, with dictionary passing, to:

raise d x = (d (+)) x (d fromInteger 5)

Hence the user-written raise gets all the flexibility of built-in 5.

Although in some cases, the slowest part of computing (x+1) may be the 1.

Ian Stark APL8 2010-02-04

Instances Anywhere

Qualified polymorphic functions may even use instances defined later on:

import Complex
i = sqrt (−1) :: Complex Float
raise i

Instance declarations can be at class declaration; or type declaration; or
anywhere else.

This can retrospectively hook new types up to existing libraries, or extend
existing types by bringing into new classes.

In each case, a compiler can use dictionary-passing translation to a
class-free lower language, which is then open to all optimisations available
for general programming.

Ian Stark APL8 2010-02-04

Outline

1 Type Classes

2 People

3 Multiparameter Type Classes

4 Constructor Classes

5 Others

6 Closing

Ian Stark APL8 2010-02-04

Quiz

Programming Language Inventor or Serial Killer?

http://www.malevole.com/mv/misc/killerquiz/

Ian Stark APL8 2010-02-04

http://www.malevole.com/mv/misc/killerquiz/

Outline

1 Type Classes

2 People

3 Multiparameter Type Classes

4 Constructor Classes

5 Others

6 Closing

Ian Stark APL8 2010-02-04

Multiparameter Type Classes

In Haskell ’98 a class can only qualify a single type.

class Reportable a where
report :: a −> String

Some implementations of Haskell extend this to multiparameter type
classes that can relate two or more types.

M. P. Jones.
Type classes with functional dependencies.
In Programming Languages and Systems: Proceedings of the 9th
European Symposium on Programming, ESOP 2000, Lecture Notes in
Computer Science 1782, pages 230–244. Springer-Verlag, 2000.

Ian Stark APL8 2010-02-04

http://web.cecs.pdx.edu/~mpj/pubs/fundeps.html

Multiparameter Type Class Example

For example, we might indicate that one type is a collection of elements
from another:

class Collects s e where
empty :: s
insert :: e −> s −> s
member :: e −> s −> Boolean

We can then use different collection implementations for particular kinds of
element:

instance Eq e => Collects [e] e where ...
instance Eq e => Collects (e −> Bool) e where ...
instance Collects BitSet Char where ...
instance (Hashable e, Collects s e)

=> Collects (Array Int s) e where ...

Ian Stark APL8 2010-02-04

Multiparameter Type Class Example

For example, we might indicate that one type is a collection of elements
from another:

class Collects s e where
empty :: s
insert :: e −> s −> s
member :: e −> s −> Boolean

Unfortunately, there is a problem of ambiguity.

empty :: Collects s e => s

Which element type should this be collecting?

(\x y −> insert x . insert y) :: a −> b −> s −> s

Is ‘s’ a collection of ‘a’ values or ‘b’ values? Could it be both?

Ian Stark APL8 2010-02-04

Multiparameter Type Class Example

For example, we might indicate that one type is a collection of elements
from another:

class Collects s e where
empty :: s
insert :: e −> s −> s
member :: e −> s −> Boolean

In practice, the type of elements ‘e’ is determined by the collection type ‘s’.
We make this explicit with a functional dependency

class Collects s e | s −> e where
empty :: s
insert :: e −> s −> s
member :: e −> s −> Boolean

This guarantees (and enforces) that for each ‘s’ there can be at most one
‘e‘ with Collects s e.

Ian Stark APL8 2010-02-04

Multiparameter Type Class Example

For example, we might indicate that one type is a collection of elements
from another:

class Collects s e where
empty :: s
insert :: e −> s −> s
member :: e −> s −> Boolean

Multiparameter type classes can give yet more overloading:
class Multiply a b c | a b −> c where

mult :: a −> b −> c

instance Num n => Multiply n n n where mult = (∗)
instance Num n => Multiply n (Vector n) (Vector n) where mult = ...
instance Num n => Multiply n (Matrix n) (Matrix n) where mult = ...
instance Num n => Multiply (Matrix n) (Matrix n) (Matrix n) where ...

Ian Stark APL8 2010-02-04

Outline

1 Type Classes

2 People

3 Multiparameter Type Classes

4 Constructor Classes

5 Others

6 Closing

Ian Stark APL8 2010-02-04

Kinds and Constructors

In Haskell Integer is a type, and Maybe is a type constructor — unlike
types, constructors have no values.

Types and constructors are themselves classified by kinds. Every type has
kind ∗, and constructors have kinds built using ∗ and −>.

Integer, Int, Float :: ∗ [] :: ∗ −> ∗
Maybe :: ∗ −> ∗ (,) :: ∗ −> ∗ −> ∗

(,,) :: ∗ −> ∗ −> ∗ −> ∗

It is even possible to have higher kinds:

data TreeOf f a = Leaf a | Node (f (TreeOf f a))

Node [Leaf True,Leaf False] :: TreeOf [] Bool

TreeOf :: (∗−>∗) −> ∗ −> ∗

Ian Stark APL8 2010-02-04

Classes for Constructors

Not only do constructors have kinds, they can also belong to classes within
them.

class Functor f where −− Type constructor f :: ∗ −> ∗
fmap :: (a −> b) −> f a −> f b

instance Functor [] where
fmap = map

instance Functor Maybe where
fmap p Nothing = Nothing
fmap p (Just x) = Just (p x)

instance Functor f => Functor (TreeOf f) where
fmap p (Leaf a) = Leaf (p a)
fmap p (Node n) = Node (fmap p n)

Ian Stark APL8 2010-02-04

Outline

1 Type Classes

2 People

3 Multiparameter Type Classes

4 Constructor Classes

5 Others

6 Closing

Ian Stark APL8 2010-02-04

And it goes on...

Haskell has an expanding cornucopia of type-driven language features.
Many are implemented in GHC, if only experimentally.

Explicit kinds 1 :: (Int :: ∗)
Explicit for-all f :: forall a.(a −> a −> a)
Rank-2 polymorphism, and higher g :: (forall a.(a−>[a])) −> Int
Existential types xs :: exists a.(a,a−>Bool,a−>String)
GADT: Generalized Algebraic Datatypes
. . .

Ian Stark APL8 2010-02-04

Outline

1 Type Classes

2 People

3 Multiparameter Type Classes

4 Constructor Classes

5 Others

6 Closing

Ian Stark APL8 2010-02-04

Reading

Homework

Read the following paper on multiparameter type classes.

M. P. Jones.
Type classes with functional dependencies.
In Programming Languages and Systems: Proceedings of the 9th
European Symposium on Programming, ESOP 2000, Lecture Notes in
Computer Science 1782, pages 230–244. Springer-Verlag, 2000.

Ian Stark APL8 2010-02-04

http://web.cecs.pdx.edu/~mpj/pubs/fundeps.html

Further Reading

Simon Peyton Jones (Editor)
Haskell 98 Language and Libraries: The Revised Report
Journal of Functional Programming 13(1):7–255.
http://www.haskell.org/onlinereport/

The GHC Team
The Glorious Glasgow Haskell Compilation System User’s Guide
http:
//www.haskell.org/ghc/docs/latest/html/users_guide/index.html

Haskell’ ("Haskell Prime")
http://hackage.haskell.org/trac/haskell-prime/

Simon Marlow
Announcing Haskell 2010
Haskell Mailing List, November 2009.

Ian Stark APL8 2010-02-04

http://www.haskell.org/onlinereport/
http://www.haskell.org/ghc/docs/latest/html/users_guide/
http://www.haskell.org/ghc/docs/latest/html/users_guide/index.html
http://www.haskell.org/ghc/docs/latest/html/users_guide/index.html
http://hackage.haskell.org/trac/haskell-prime/
http://www.haskell.org/pipermail/haskell/2009-November/021750.html

Further References

Mark Jones
A system of constructor classes: overloading and implicit higher-order
polymorphism
In Functional Programming and Computer Architecture: Proceedings
of FPCA ’93, pages 52–61. ACM Press, 1993.

James Cheney and Ralf Hinze
First-class phantom types
Technical Report TR2003-1901, Cornell University Faculty of
Computing and Information Science

Ian Stark APL8 2010-02-04

http://dx.doi.org.ezproxy.webfeat.lib.ed.ac.uk/10.1145/165180.165190
http://dx.doi.org.ezproxy.webfeat.lib.ed.ac.uk/10.1145/165180.165190
http://homepages.inf.ed.ac.uk/jcheney/
http://hdl.handle.net/1813/5614

	Type Classes
	People
	Multiparameter Type Classes
	Constructor Classes
	Others
	Closing

