Advances in Programming Languages

APL8: Multiparameter Type Classes, Constructor Classes

lan Stark

School of Informatics
The University of Edinburgh

Thursday 4 February
Semester 2 Week 4

http://www.inf.ed.ac.uk/teaching/courses/apl

http://www.inf.ed.ac.uk/teaching/courses/apl
http://www.ed.ac.uk
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

Foreword

Some Types in Haskell

This is the second of four lectures about some features of types and typing
in Haskell types, specifically:

@ Type classes
@ Multiparameter type classes, constructor classes,
@ Monads and interaction with the outside world

@ Encapsulating stateful computation

lan Stark APL8 2010-02-04

Foreword

Some Types in Haskell

This is the second of four lectures about some features of types and typing
in Haskell types, specifically:

@ Type classes
@ Multiparameter type classes, constructor classes,
@ Monads and interaction with the outside world

@ Encapsulating stateful computation

lan Stark APL8 2010-02-04

@ Type Classes

lan Stark APL8 2010-02-04

Parametric Polymorphism

Haskell makes extensive use of parametric polymorphism
reverse :: [a] —> [a]

> reverse [1,2,3]
[3,2,1]

> reverse [True,False]
[False, True]

> reverse "Edinburgh”
"hgrubnidE"

The polymorphic function reverse here must use nothing at all specific
about the type ‘a’ being handled.

lan Stark APL8 2010-02-04

Qualified Polymorphism

The introduction of type classes refine this so functions can make
assumptions about the operations available on values.

revShow :: Show a => [a] —> [String]
revShow = reverse . map show

> revShow [1,2,3]
[I|3II’||2II'II1II]

> revShow [1.2,3.4,5.6]
[||5'6||,||3'4||,||1'2||]

> revShow "abc"

This resembles method dispatch and OO-style polymorphism, but they are
not the same: although different lists passed to revShow may contain dif-
ferent types, each list must carry only elements of a single type.

Homogeneous collections, not heterogeneous

lan Stark APL8 2010-02-04

Qualified Polymorphism

The introduction of type classes refine this so functions can make
assumptions about the operations available on values.

revShow :: Show a => [a] —> [String]
revShow = reverse . map show

> revShow [1,2,3]
[I|3II’||2II'II1II]

> revShow [1.2,3.4,5.6]
[||5'6||,||3'4||,||1'2||]

> revShow "abc"
IIYC’II IIYb’II IIVa’II

On the other hand, this does allow bulk operations like
maximum, minimum :: (Ord a) => [a] —> a

which caused such problems for the Java type system.

lan Stark APL8 2010-02-04

Multiple Classes

Polymorphic values may use more than one class qualification:

lan Stark

showMax :: (Ord a, Show a) => [a] —> String
showMax = show . maximum

> showMax [1,2,3]
||3||

> showMax "Edinburgh"

mnwr o1

u

> showMax ["Advances","Programming”, "Languages"]
"\"Programming\""

APL8 2010-02-04

Subclassing

Adding qualifications to class declarations introduces subclassing:

class (Eq a) => Ord a where

compare ;> a —> a —> Ordering
(<), (=), (>=). (>) : a—>a —> Bool
max, min T a—>a—>a

So every Ord type is also an Eq type: but note that this is subclassing not
subtyping.

lan Stark APL8 2010-02-04

Multiway Subclassing

Classes may depend on more
than one superclass; including
diamonds of related classes.

lan Stark

APL8

Int, Integer, Flost,
Dosle

Integral
Int, Infeger
Monad
10, [, Maybe

MonadPlus
10, [I, Maybe

Show
Allexept
10,0

Bounded
Int, Char, Bool, ()
Otdering, tuples

Num
Init, Tnteger,
Float, Dotble

RealFrac Floating
Float, Double Float, Double
RealFloat
Float, Dotble

2010-02-04

Nested Instances

class Reportable a where
report :: a —> String

instance Reportable Integer where
report i = show i

instance Reportable Char where
report ¢ = [c]

instance Reportable a => Reportable [a] where
report xs = "[" ++ intercalate "," (map report xs) ++ "]"

instance (Reportable a, Reportable b) => Reportable (a,b) where
report (x,y) = "(" ++ report x ++ "." ++ report y ++)"

> report [(1,’a’),(2,'b’)]

"[(1.a).(2,b)]"
Building concrete instances like Reportable [(a,b)] may require some
search by the compiler. (instance declarations ~ mini logic programming)

lan Stark APL8 2010-02-04

Code Inheritance

Classes declarations may carry code that is inherited by all types of that
class.

class Eq a where
(==), (/=) :: a—>a —> Bool

x /=y =not (x==y)
x ==y = not (x

Instances of Eq may provide ==, or /=, or both.

Types may draw code from multiple classes, as with OO traits and mixins.

lan Stark APL8 2010-02-04

Multimethods

Polymorphic qualification need not be determined by a single “primary”
value.

(++) == [a] —> [a] —> [a]
left x = "Before" ++ x

right y =y ++ [3,4,5]
both x y = (x ++ y) :: [Float]

This answers the "binary method problem” in a similar way to OO
multiple dispatch.

lan Stark APL8 2010-02-04

Typing by Result

Resolving which instance of a method to use may even be done without
any arguments at all:

maxBound :: (Bounded a) => a

Instance by result is used to overload numeric constants. The definition
raise x =x + 5

is expanded by the compiler, with dictionary passing, to:
raise d x = (d (+)) x (d fromInteger 5)

Hence the user-written raise gets all the flexibility of built-in 5.

Although in some cases, the slowest part of computing (x+1) may be the 1.

lan Stark APL8 2010-02-04

Instances Anywhere

Qualified polymorphic functions may even use instances defined later on:

import Complex
i =sqrt (—1) :: Complex Float

raise i

Instance declarations can be at class declaration; or type declaration; or
anywhere else.

This can retrospectively hook new types up to existing libraries, or extend
existing types by bringing into new classes.

In each case, a compiler can use dictionary-passing translation to a
class-free lower language, which is then open to all optimisations available
for general programming.

lan Stark APL8 2010-02-04

Outline

© People

lan Stark APL8 2010-02-04

Programming Language Inventor or Serial Killer?

http://www.malevole.com/mv/misc/killerquiz/

2010-02-04

http://www.malevole.com/mv/misc/killerquiz/

© Multiparameter Type Classes

lan Stark APL8 2010-02-04

Multiparameter Type Classes

In Haskell '98 a class can only qualify a single type.

class Reportable a where
report :: a —> String

Some implementations of Haskell extend this to multiparameter type
classes that can relate two or more types.

[4 M. P. Jones.
Type classes with functional dependencies.
In Programming Languages and Systems: Proceedings of the 9th
European Symposium on Programming, ESOP 2000, Lecture Notes in
Computer Science 1782, pages 230-244. Springer-Verlag, 2000.

lan Stark APL8 2010-02-04

http://web.cecs.pdx.edu/~mpj/pubs/fundeps.html

Multiparameter Type Class Example

For example, we might indicate that one type is a collection of elements
from another:

class Collects s e where
empty s
insert @ e—>s—>s
member :: e —> s —> Boolean

We can then use different collection implementations for particular kinds of
element:

instance Eq e => Collects [e] e where ...
instance Eq e => Collects (e —> Bool) e where ...
instance Collects BitSet Char where ...
instance (Hashable e, Collects s e)
=> Collects (Array Int s) e where ...

lan Stark APL8 2010-02-04

Multiparameter Type Class Example

For example, we might indicate that one type is a collection of elements
from another:

class Collects s e where
empty s
insert @ e—>s—>s
member :: e —> s —> Boolean

Unfortunately, there is a problem of ambiguity.
empty :: Collectsse => s
Which element type should this be collecting?
(\xy —> insert x . inserty) :a —>b —>s—>s

Is ‘s’ a collection of ‘a’ values or ‘b’ values? Could it be both?

lan Stark APL8 2010-02-04

Multiparameter Type Class Example

For example, we might indicate that one type is a collection of elements
from another:

class Collects s e where
empty s
insert @ e—>s—>s
member :: e —> s —> Boolean

In practice, the type of elements ‘e’ is determined by the collection type ‘s’.
We make this explicit with a functional dependency

class Collects s e | s —> e where
empty s
insert 1 e—>s—>s
member :: e —> s —> Boolean

This guarantees (and enforces) that for each ‘s’ there can be at most one
‘e’ with Collects s e.

lan Stark APL8 2010-02-04

Multiparameter Type Class Example

For example, we might indicate that one type is a collection of elements
from another:

class Collects s e where
empty s
insert 1 e—>s—>s
member :: e —> s —> Boolean
Multiparameter type classes can give yet more overloading:
class Multiply a b c | a b —> c where
mult:a—>b—>c

instance Num n => Multiply n n n where mult = ()

instance Num n => Multiply n (Vector n) (Vector n) where mult = ...
instance Num n => Multiply n (Matrix n) (Matrix n) where mult = ...
instance Num n => Multiply (Matrix n) (Matrix n) (Matrix n) where ...

lan Stark APL8 2010-02-04

Outline

@ Constructor Classes

lan Stark APL8 2010-02-04

Kinds and Constructors

In Haskell Integer is a type, and Maybe is a type constructor — unlike
types, constructors have no values.

Types and constructors are themselves classified by kinds. Every type has
kind *, and constructors have kinds built using * and —>.

Integer, Int, Float :: x [[2 *—>x
Maybe :: % —> x (L) =% —>% —>x
(,,) ok => % —> % —> %

It is even possible to have higher kinds:
data TreeOf f a = Leaf a | Node (f (TreeOf f a))

Node [Leaf True,Leaf False] :: TreeOf [] Bool
TreeOf =1 (x—>%) —> % —> *

lan Stark APL8 2010-02-04

Classes for Constructors

Not only do constructors have kinds, they can also belong to classes within
them.

class Functor f where —— Type constructor f :: % —> x
fmap::(a—>b)—>fa—>fb

instance Functor [] where
fmap = map

instance Functor Maybe where
fmap p Nothing = Nothing
fmap p (Just x) = Just (p x)

instance Functor f => Functor (TreeOf f) where
fmap p (Leaf a) = Leaf (p a)
fmap p (Node n) = Node (fmap p n)

lan Stark APL8 2010-02-04

© Others

lan Stark APL8 2010-02-04

Haskell has an expanding cornucopia of type-driven language features.
Many are implemented in GHC, if only experimentally.

e Explicit kinds 1 :: (Int :: %)
Explicit for-all f :: forall a.(a —> a —> a)

Rank-2 polymorphism, and higher g :: (forall a.(a—>[a])) —> Int

"]
]
e Existential types xs :: exists a.(a,a—>Bool,a—>String)
@ GADT: Generalized Algebraic Datatypes

]

lan Stark APL8 2010-02-04

Outline

@ Closing

lan Stark APL8 2010-02-04

Homework

Read the following paper on multiparameter type classes.

[4 M. P. Jones.
Type classes with functional dependencies.
In Programming Languages and Systems: Proceedings of the 9th
European Symposium on Programming, ESOP 2000, Lecture Notes in
Computer Science 1782, pages 230-244. Springer-Verlag, 2000.

lan Stark APL8 2010-02-04

http://web.cecs.pdx.edu/~mpj/pubs/fundeps.html

Further Reading

B

lan Stark

Simon Peyton Jones (Editor)

Haskell 98 Language and Libraries: The Revised Report
Journal of Functional Programming 13(1):7-255.
http://www.haskell.org/onlinereport/

The GHC Team

The Glorious Glasgow Haskell Compilation System User's Guide
http:
//www.haskell.org/ghc/docs/latest/html/users_guide/index.html

Haskell" ("Haskell Prime")
http://hackage.haskell.org/trac/haskell-prime/

Simon Marlow
Announcing Haskell 2010
Haskell Mailing List, November 2009.

APL8 2010-02-04

http://www.haskell.org/onlinereport/
http://www.haskell.org/ghc/docs/latest/html/users_guide/
http://www.haskell.org/ghc/docs/latest/html/users_guide/index.html
http://www.haskell.org/ghc/docs/latest/html/users_guide/index.html
http://hackage.haskell.org/trac/haskell-prime/
http://www.haskell.org/pipermail/haskell/2009-November/021750.html

Further References

[4 Mark Jones
A system of constructor classes: overloading and implicit higher-order
polymorphism
In Functional Programming and Computer Architecture: Proceedings
of FPCA '93, pages 52—-61. ACM Press, 1993.

[4 James Cheney and Ralf Hinze
First-class phantom types
Technical Report TR2003-1901, Cornell University Faculty of
Computing and Information Science

lan Stark APL8 2010-02-04

http://dx.doi.org.ezproxy.webfeat.lib.ed.ac.uk/10.1145/165180.165190
http://dx.doi.org.ezproxy.webfeat.lib.ed.ac.uk/10.1145/165180.165190
http://homepages.inf.ed.ac.uk/jcheney/
http://hdl.handle.net/1813/5614

	Type Classes
	People
	Multiparameter Type Classes
	Constructor Classes
	Others
	Closing

