
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Advances in Programming Languages
Certifying correctness

David Aspinall

School of Informatics
The University of Edinburgh

Thursday 28 January 2010
Semester 2 Week 3

http://www.ed.ac.uk
http://hompeages.inf.ed.ac.uk/da
http://www.inf.ed.ac.uk
http://www.ed.ac.uk


Topic: Some Formal Verification

This is the final lecture of four lectures about some techniques and tools
for formal verification, specifically:

Hoare logic

JML: The Java Modeling Language

ESC/Java2: The Extended Static Checker for Java

Certifying correctness: approaches and examples



Outline

1 Introduction

2 Proof-Carrying Code

3 Certified Compilation

4 Summary

5 Next week



Verification at Different Levels

D
d //

c

��

D ′

��
I o

// I ′

checking design (or specification)
check that D satisfies some property

checking implementation
check that I has some behaviour

checking translations
check that refinement d preserves properties
check that compilation c preserves properties
check that optimisation o preserves behaviours



Certifying Correctness

Certify. trans. To make (a thing) certain; to guarantee as certain,
attest in an authoritative manner; to give certain information of.

Various mechanisms are used to provide guarantees of checks performed to
show software correctness or suitability.

informal argument written in English
check-list of manually measured/assessed criteria
set of executable tests that are checked automatically
transcript of input and output to a verification system
a signature of an authority, analogue or digital
digital evidence, checked electronically



Certifying Correctness

Certify. trans. To make (a thing) certain; to guarantee as certain,
attest in an authoritative manner; to give certain information of.

Various mechanisms are used to provide guarantees of checks performed to
show software correctness or suitability.

informal argument written in English
check-list of manually measured/assessed criteria
set of executable tests that are checked automatically
transcript of input and output to a verification system
a signature of an authority, analogue or digital
digital evidence, checked electronically



Outline

1 Introduction

2 Proof-Carrying Code

3 Certified Compilation

4 Summary

5 Next week



Code signing: worth the bits?

Currently: we trust code based on authentication of its source.
I’ll trust updates to IE only if they’re signed by Microsoft.

Code signing is better than trusting unauthenticated code: digital
version of “shrink-wrapping”. But this trust is fallible:

Microsoft’s signing scheme may be compromised (this has actually
happened, by a infamous social engineering attack on Verisign),
More seriously, the code might not be secure anyway, if Microsoft fails
to program securely, or infection/corruption before signing (also
happened: MS accidently distributed Nimda virus with VS .NET!)

The problem is that we delegate trust to somebody else rather than
examining the code for ourselves.
Could we instead examine the code ourselves to prove that it is
secure?

that seems like hard work, proving all those VCs. . .
but if someone gave us the proofs, we can efficiently check them!

http://news.com.com/2100-1001-254586.html?legacy=cnet
http://news.com.com/2100-1001-935994.html


Proof-carrying Code

Ideally, we certify code not to its origin, but with a self-evident
guarantee of security, to capture exactly what we want.
The code is packaged together with the guarantee and shipped to the
code consumer (client).
The consumer checks:

1 the guarantee is correct
2 the guarantee ensures the local security property desired
3 the guarantee matches the code

If so, the code is safe to execute. Ex: what can go wrong?

This is the subject of research into proof-carrying code (PCC) and,
more generally, evidence-based security.
A form of evidence-based security (aka “lightweight PCC”) is now
used in Java: the stack maps used in JVML since Java 1.6 (see JSR
202).



Proof-carrying Code

Ideally, we certify code not to its origin, but with a self-evident
guarantee of security, to capture exactly what we want.
The code is packaged together with the guarantee and shipped to the
code consumer (client).
The consumer checks:

1 the guarantee is correct
2 the guarantee ensures the local security property desired
3 the guarantee matches the code

If so, the code is safe to execute. Ex: what can go wrong?

This is the subject of research into proof-carrying code (PCC) and,
more generally, evidence-based security.
A form of evidence-based security (aka “lightweight PCC”) is now
used in Java: the stack maps used in JVML since Java 1.6 (see JSR
202).



Proof-carrying Code

Ideally, we certify code not to its origin, but with a self-evident
guarantee of security, to capture exactly what we want.
The code is packaged together with the guarantee and shipped to the
code consumer (client).
The consumer checks:

1 the guarantee is correct
2 the guarantee ensures the local security property desired
3 the guarantee matches the code

If so, the code is safe to execute. Ex: what can go wrong?

This is the subject of research into proof-carrying code (PCC) and,
more generally, evidence-based security.
A form of evidence-based security (aka “lightweight PCC”) is now
used in Java: the stack maps used in JVML since Java 1.6 (see JSR
202).



Proof-carrying Code: mechanism

Basic idea: give a mechanized proof that security properties are
met. The compiler and/or programmer adds annotations to the code
to express security-related invariants. These annotations become the
proof certificate that the code is safe, and can be efficiently checked.

In practice, the PCC protocol may allow for some negotiation to set
security policy.

It might also allow for the combination of cryptographic and proof
certificates.

Theoretical work of the LFCS institute in Informatics, Edinburgh,
dating from 80s–90s is being applied today in PCC.
Specifically, Logical Frameworks are used to explicitly represent
proofs, and Deliverables are the package of a program plus proof.



PCC Example: MRG – Mobile Resource Guarantees

Write programs in a custom high-level language Camelot, a
functional language with an OCaml-like syntax.
Camelot is compiled into Grail, a functional intermediate code, which
is isomorphic to a subset of JVML.
Use an abstract cost model for the JVM which counts instructions
and measures stack and heap sizes.
Costs are calculated using a annotated operational semantics for
Grail, reflecting the expansion into JVML.
Grail Logic is a Hoare-like program logic which can express resource
assertions about the operational semantics.

Camelot has a resource type inference system, which is used to
produce proofs in a logic of derived assertions.
The annotated semantics, logics, and meta-theorems have all been
formalised in Isabelle, and Isabelle proof scripts are used as a proof
transmission format.



PCC Example: MRG – Mobile Resource Guarantees

Write programs in a custom high-level language Camelot, a
functional language with an OCaml-like syntax.
Camelot is compiled into Grail, a functional intermediate code, which
is isomorphic to a subset of JVML.
Use an abstract cost model for the JVM which counts instructions
and measures stack and heap sizes.
Costs are calculated using a annotated operational semantics for
Grail, reflecting the expansion into JVML.
Grail Logic is a Hoare-like program logic which can express resource
assertions about the operational semantics.
Camelot has a resource type inference system, which is used to
produce proofs in a logic of derived assertions.
The annotated semantics, logics, and meta-theorems have all been
formalised in Isabelle, and Isabelle proof scripts are used as a proof
transmission format.



Architecture of MRG

JVMLJVML

Grail
Grail

CertificateCertificate

Camelot Type system

Network

Contraction

Certificate Checker

Expansion

Certifying Compiler

JVM

Resource Policy
OK?



Camelot

Example program: insertion sort:
type iList = !Nil | Cons of int * iList
let ins a l =

match l with Nil -> Cons(a,Nil)
| Cons(x,t)@_ -> if a < x then Cons(a,Cons(x,t))

else Cons(x, ins a t)
let sort l =

match l with Nil -> Nil | Cons(a,t)@_ -> ins a (sort t)

The notation @_ indicates a destructive pattern match
Whole program compilation where each Camelot function yields one
JVM method
Compilation includes an explicit memory manager (freelist)



Program analysis, certification and proof checking

let ins a l =
match l with Nil -> Cons(a,Nil)

| Cons(x,t)@_ -> if a < x then Cons(a,Cons(x,t))
else Cons(x, ins a t)

let sort l = match l with Nil -> Nil | Cons(a,t)@_ -> ins a (sort t)

Memory consumption inferred from program annotations using a type
system; usage expressed relative to size of input.
Here: ins consumes one memory cell, independent from actual input,
sort does not consume any memory (in-place)
PCC certificate: the result of type inference is encoded in a program
logic for the compiled Grail code
Certificate bundled with Java class file for transmission
JVM at consumer side uses modified class loader that checks
certificate in Isabelle before executing the program.



MRG demos

See:
MRG home page at http://groups.inf.ed.ac.uk/mrg/

MRG demo at http://projects.tcs.ifi.lmu.de/mrg/pcc4/index.php
usually working, sometimes goes down

http://groups.inf.ed.ac.uk/mrg/
http://projects.tcs.ifi.lmu.de/mrg/pcc4/index.php


PCC Example: Mobius — Mobility, Ubiquity and Security

An EU project 2004-2009 with 16 partners in 10 countries.
Started from a shared concept of proof-carrying code
Extended to gather in a range of types of digital evidence that
guarantee program behaviour.
proof based The certificate contains a proof which refers to bytecode

behaviour in a bytecode logic. A proof-checker checks
these.

type based The certificate contains typing annotations for a
specialised type system which extends Java typing and
guarantees a safety invariant. A type-checker checks the
annotations. Separately and offline, the type system is
proved correct.

abstract-interpretation based The certificate contains solutions for an
program analysis problem based on constraint solving.
The solution is checked to satisfy the constraints.



Mobius Demos

Video on YouTube

Search for “Mobius demo” or go to direct link
http://www.youtube.com/watch?v=4AYiwo4NQtE

Mobius Quiz (uses simulator)

See Ian’s pages at http://homepages.inf.ed.ac.uk/stark/mq/
currently partially working, may be fixed soon

http://www.youtube.com/watch?v=4AYiwo4NQtE
http://homepages.inf.ed.ac.uk/stark/mq/


Possible future: Trustworthy Apps

Software
Developers

App
Store Users

Digital evidence flows around the Trustworthy App Store network
architecture:

From store to user, evidence to satisfy security/resource policy
From store to developer, stating objective acceptance policies
From developer to store, providing evidence to meet these

credit: this slide is due to Ian Stark



Outline

1 Introduction

2 Proof-Carrying Code

3 Certified Compilation

4 Summary

5 Next week



Compiler correctness

Compiler correctness is an old example of the translation correctness
problem. Modernly, two viewpoints:

theoretical folk
Compilers are complicated pieces of code.
We rely on them, but they are buggy.

Like other complicated pieces of code we ought to verify that they do
what is intended, and fix them if they don’t.

compiler folk

Compilers are very complicated pieces of code.
We rely on them and they are buggy. But that’s life.
The underlying hardware also has bugs. There haven’t been any verified
CPU cores since the 1980s. We just hope the bugs are rare, and only
use old CPU architectures for controling nuclear power stations.



Compiler correctness

Compiler correctness is an old example of the translation correctness
problem. Modernly, two viewpoints:

theoretical folk
Compilers are complicated pieces of code.
We rely on them, but they are buggy.
Like other complicated pieces of code we ought to verify that they do
what is intended, and fix them if they don’t.

compiler folk

Compilers are very complicated pieces of code.
We rely on them and they are buggy. But that’s life.
The underlying hardware also has bugs. There haven’t been any verified
CPU cores since the 1980s. We just hope the bugs are rare, and only
use old CPU architectures for controling nuclear power stations.



Compiler correctness

Compiler correctness is an old example of the translation correctness
problem. Modernly, two viewpoints:

theoretical folk
Compilers are complicated pieces of code.
We rely on them, but they are buggy.
Like other complicated pieces of code we ought to verify that they do
what is intended, and fix them if they don’t.

compiler folk

Compilers are very complicated pieces of code.
We rely on them and they are buggy. But that’s life.

The underlying hardware also has bugs. There haven’t been any verified
CPU cores since the 1980s. We just hope the bugs are rare, and only
use old CPU architectures for controling nuclear power stations.



Compiler correctness

Compiler correctness is an old example of the translation correctness
problem. Modernly, two viewpoints:

theoretical folk
Compilers are complicated pieces of code.
We rely on them, but they are buggy.
Like other complicated pieces of code we ought to verify that they do
what is intended, and fix them if they don’t.

compiler folk

Compilers are very complicated pieces of code.
We rely on them and they are buggy. But that’s life.
The underlying hardware also has bugs. There haven’t been any verified
CPU cores since the 1980s. We just hope the bugs are rare, and only
use old CPU architectures for controling nuclear power stations.



Piecemeal Verification: Translation Validation

The idea of translation validation is rather than to verify a whole
compiler, check that individual compilations (or individual
optimisation steps) actually performed are correct.
This relaxes the requirement that the compiler is globally correct.
The compiler checks that it has produced the right result each time.
Some input programs may produce errors or trigger compiler bugs;
validations cannot be produced for these programs.

See:
Amir Pnueli, Michael Siegel and Eli Singerman. Translation Validation,
TACAS ’98. http://portal.acm.org/citation.cfm?id=691453

George C. Necula. Translation validation for an optimizing compiler,
SIGPLAN Notices, 35/5, 2000.
http://doi.acm.org/10.1145/358438.349314.

http://portal.acm.org/citation.cfm?id=691453
http://doi.acm.org/10.1145/358438.349314


Compcert: Compiler Verification Revisited

Compcert (developed at Inria in Paris, France) uses Clight, a subset
of C. Compilation is to a real architecture, PowerPC, and with a
realistic optimisation level.
Notion of correctness is formally established:

S safe =⇒ ∀B,C ⇓ B =⇒ S ⇓ B

where safe means “does not go wrong”
14 stages through 7 intermediate representations, including register
allocation, instruction scheduling, layout of stack frames, etc.
Formal proofs are carried out in the Coq interactive proof assistant
The compiler itself is coded directly in a pure functional way inside
Coq’s logic, simplifying reasoning (no Hoare logic is needed)
The code can be extracted to a speedy OCaml program.
The complete work is available as commented source code at
http://compcert.inria.fr/.

http://compcert.inria.fr/


Outline

1 Introduction

2 Proof-Carrying Code

3 Certified Compilation

4 Summary

5 Next week



Formal Verification: Overall Summary

Correctness approaches
design checking that the design (or specification) has good properties
implementation checking that the implementation has the right
behaviour
translation checking that an implementation is a correct realisation
of the design.

Examples

program verification: checking a program meets its specification
proof-carrying code: program verification with electronic evidence
translation validation: checking particular translations are correct
compiler verification: checking that a compiler translates correctly

Example projects and tools: Hoare logic, JML, ESC/Java2, MRG, Mobius,
Compcert.



Outline

1 Introduction

2 Proof-Carrying Code

3 Certified Compilation

4 Summary

5 Next week



Reading for next week

Next block of lectures

The next block of lectures will start out by considering notions of
inheritance, subtyping and how they fit together, using Haskell types.

Before Monday, you should download and read the following paper:
William R. Cook.
Interfaces and specifications for the Smalltalk-80 collection
classes.
Proc. OOPSLA 1992.
http://doi.acm.org/10.1145/141936.141938

http://doi.acm.org/10.1145/141936.141938

	Introduction
	Proof-Carrying Code
	Certified Compilation
	Summary
	Next week

