
http://www.inf.ed.ac.uk/teaching/courses/apl

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Advances in Programming Languages
APL4: JML — The Java Modeling Language

David Aspinall
(slides originally by Ian Stark)

School of Informatics
The University of Edinburgh

Thursday 21 January 2010
Semester 2 Week 2

http://www.inf.ed.ac.uk/teaching/courses/apl
http://www.ed.ac.uk
http://homepages.ed.ac.uk/da
http://www.inf.ed.ac.uk/~stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

Topic: Some Formal Verification

This is the second of four lectures about techniques and tools for formal
verification, specifically:

Hoare logic
JML: The Java Modeling Language
ESC/Java 2: The Extended Static Checker for Java
Certifying correctness: approaches and examples

Outline

1 Introduction

2 Samples of JML

3 JML Tools

Outline

1 Introduction

2 Samples of JML

3 JML Tools

Hoare Logic (recap)

Hoare assertions {P} C {Q} state that if precondition P holds before
running code C then postcondition Q will hold afterwards.
Assertions ` {P} C {Q} can be derived using Hoare rules; they may
also be tested against a semantics � {P} C {Q}.
This allows logical reasoning about program behaviour: notably in
formal specification and verification.
Hoare assertions are widely used in tools and languages for formal
methods. (e.g. Praxis SPARK Examiner)

Assertions may be strengthened to contracts for code, placing
obligations on both caller and called. (e.g. Eiffel)

Model-based specification
Modeling (sic) is an abstraction technique for system design and
specification.
A model is a representation of the desired system.
A formal model is one that has a precise description in a formal language.
A model differs from an implementation in that it might:

capture only some aspects of the system (e.g., interfaces);
be partial, leaving some parts unspecified;
not be executable.

An implementation of the system can be compared to the model.
Sometimes the model is iteratively refined to give the implementation.

Sample applications of modeling in computer software development:
VDM the Vienna Development Method.

B the B language and B method.
Extended ML the extension of Standard ML with specifications.

OCL the Object Constraint Language extension of UML.

The Java Modeling Language

The Java Modeling Language, JML, combines model-based and contract
approaches to specification.

Some design features:

The specification lives close to the code
Within the Java source, in annotation comments /∗@...@∗/

Uses Java syntax and expressions
Rather than a separate specification language.

Common language for many tools and analysis
Tools add their own extensions, and ignore those of others.

Web site: jmlspecs.org

jmlspecs.org

Outline

1 Introduction

2 Samples of JML

3 JML Tools

JML: basics

public class Account {
public int credit;

/∗@ requires credit > amount && amount > 0;
@ ensures credit > 0 && credit == \old(credit) − amount;
@∗/

public int withdraw(int amount) {
...

}
}

JML conditions combine logical formulae (&&,==) with Java expressions
(credit, amount). Expressions must be pure: no side-effects.

There are also visibility controls, glossed over in these examples: credit ought not to be public!

JML: exceptions

public class Account {
public int credit;

/∗@ requires credit > amount && amount > 0;
@ ensures credit > 0 && credit == \old(credit) − amount;
@ signals (RefusedException) credit == \old(credit);
@∗/

public int withdraw throws RefusedException (int amount) {
...

}
}

Where ensures speaks about normal termination, signals specifies
properties of the state after exceptional termination.

JML: logical formulae

public class IntArray {
public int[] contents;

/∗@ requires (\forall int i,j;
@ 0<i && i<j && j<contents.length;
@ contents[i] <= contents[j]);
@
@ ensures contents[\result] == value || \result == −1;
@∗/

public int search (int value) { ... }
}

The search routine requires that array contents be sorted on entry. This
would, for example, be necessary if it used binary chop to locate value.

JML: class invariants

public class IntArray {
public int[] contents;

/∗@ invariant (\forall int i,j;
@ 0<i && i<j && j<contents.length;
@ contents[i] <= contents[j]);
@∗/

/∗@ ensures contents[\result] == value || \result == −1
@∗/

public int search (int value) { ... }
}

Now contents must be sorted whenever it is visible to clients of IntArray.

JML: assumptions and assertions

/∗@ assume j∗j < contents.length @∗/
contents[j∗j] = j;

...

a[0] = complexcomputation(a,v);
/∗@ assert (\forall int i; 1<i && i<10; a[0] < a[i]) @∗/

An assumption may help a static analysis tool.

An assertion must always be checked.

(Remember that assertions are also available in plain Java itself via the assert statement, see
http://java.sun.com/j2se/1.5.0/docs/guide/language/assert.html).

http://java.sun.com/j2se/1.5.0/docs/guide/language/assert.html

JML: models and ghosts

public class IntArray {
public int[] contents;

/∗@ model int total;
@ represents total = arraySum(contents)
@∗/

/∗@ ghost int cursor;
@ set cursor = contents.length / 2
@∗/

...
}

A model field represents some property of the model that does not appear
explicitly in the implementation.

A ghost field is a local variable used only by other parts of the specification.

JML: model methods and classes

/∗@ ensures \result = (\sum int i; 0<i && i<a.length; a[i])
@
@ public model int arraySum(int[] a);
@∗/

/∗@ public model class JMLSet { ... } @∗/

Specifications may refer to model methods and even entire model classes
to represent and manipulate desired system properties.

JML provides specifications for the standard Java classes, as well as a
library of model classes for mathematical constructions like sets, bags,
integers and reals (i.e. of arbitrary size and precision).

Outline

1 Introduction

2 Samples of JML

3 JML Tools

JML tools: running and testing

JML annotations can be used to drive various runtime checks.

jmlc is a compiler which inserts runtime tests for every assertion;
if an assertion fails, an error message provides static and
dynamic information about the failure.

jmlunit creates test classes for JUnit based on preconditions,
postconditions and invariants. These automatically exercise
and test assertions made in the code.

JML annotations also provide formal documentation:

jmldoc generates human-readable web pages from JML
specifications, extending the existing javadoc tool.

JML tools: static analysis

The ESC/Java 2 framework carries out a range of static checks on
Java programs. These include formal verification of JML annotations
using a fully-automated theorem prover.
Controversially, the checker is neither sound nor complete: it warns
about many potential bugs, but not all actual bugs.
This is by design: the aim is to find many possible bugs, quickly.

The LOOP tool also attempts to verify JML specifications. Some can
be done automatically; where this is not possible it provides proof
obligations for the interactive PVS theorem prover.

The JACK tool generates proof obligations from JML annotations on
Java and JavaCard programs; these can then be tackled with a variety
of automatic and semi-automatic theorem provers.

More tools

KeY is dynamic logic tool with a JML front end.
Krakatoa is another verification tool accepting JML.
Houdini will suggest JML annotations and test them with ESC/Java.
Daikon analyses program runs to suggest likely JML invariants.

OpenJML and related new projects are aimed at Java 5 and beyond.

Finally:
Spec# is to C# as ESC/Java 2 is to Java.

http://www.key-project.org/
http://krakatoa.lri.fr/
http://groups.csail.mit.edu/pag/daikon/
http://sourceforge.net/apps/trac/jmlspecs/wiki
http://research.microsoft.com/specsharp/

Summary

The Java Modeling Language

JML combines model-based and contract specification

Annotations within code: requires, ensures, . . .

Provides model fields, methods and classes.

Common input language for many tools: runtime checks, static
analyses, test generators, invariant guessers, etc.

Homework

The next lecture will be on ESC/Java 2.

Meanwhile you should try using JML.

Install some JML tools.
Download the Common (formerly ISU) JML Tools from
http://www.jmlspecs.org/OldReleases/. Note: these tools require Java 1.4.

Develop a simple recipe card application using JML.
design a few classes for representing ingredients, amounts and recipes;
start specifying gradually: add simple pre-conditions to methods;
write tests by composing methods;
see where your code needs additional requires, ensures or (sometimes)
assume annotations;
consider useful object invariants to constrain fields.

Post snippets and questions on the blog to discuss.

http://www.jmlspecs.org/OldReleases/

	Introduction
	Samples of JML
	JML Tools

