
http://www.inf.ed.ac.uk/teaching/courses/apl

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Advances in Programming Languages
APL20: Type-checking for SQLizeability

Ian Stark

School of Informatics
The University of Edinburgh

Thursday 17 March 2010
Semester 2 Week 10

http://www.inf.ed.ac.uk/teaching/courses/apl
http://www.ed.ac.uk
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

Topic: Domain-Specific vs. General-Purpose Languages

This is the fourth of four lectures on integrating domain-specific languages
with general-purpose programming languages. In particular, SQL for
database queries.

Using SQL from Java

LINQ: .NET Language Integrated Query

Language integration in F#

Type-checking for SQLizeability

Ian Stark APL20 2010-03-17

Topic: Domain-Specific vs. General-Purpose Languages

This is the fourth of four lectures on integrating domain-specific languages
with general-purpose programming languages. In particular, SQL for
database queries.

Using SQL from Java

LINQ: .NET Language Integrated Query

Language integration in F#

Type-checking for SQLizeability

Ian Stark APL20 2010-03-17

A Short Paper with a Long Title

This lecture presents results from the following research paper:

Ezra Cooper.
The script-writer’s dream: How to write great SQL in your own
language, and be sure it will succeed.
In Database Programming Languages: Proceedings of the 12th
International Symposium DBPL 2009, Lecture Notes in Computer
Science 5708, pages 36–51. Springer-Verlag, 2009.

Ezra developed web applications for Amazon and Moveable Type; did a
PhD here at Edinburgh; and now works in Boston on XQuery searching.
http://ezrakilty.net/.

Ian Stark APL20 2010-03-17

http://dx.doi.org.ezproxy.webfeat.lib.ed.ac.uk/10.1007/978-3-642-03793-1_3
http://dx.doi.org.ezproxy.webfeat.lib.ed.ac.uk/10.1007/978-3-642-03793-1_3
http://ezrakilty.net/

Language Integrated Query

We have seen how LINQ in C# can lower the impedance mismatch between
programming language and query language, making a host language more
sensitive to the semantics of its guest.

float findUsersInRange(SqlConnection con, float low, float high) {

Table<Person> users = con.GetTable<Person>()

var query = from u in users
where low < u.Score && u.Score < high
select new { u.Id, u.Name };

foreach(var item in query)
{ Console.WriteLine("{0}: {1}", item.Id, item.Name); }

}

Ian Stark APL20 2010-03-17

Language Integrated Query

There is more here than just extra SQL-like keywords. The
Table<Person> has typed records, field selection u.Score can be checked
at compile time, and each item has a correct static type.

float findUsersInRange(SqlConnection con, float low, float high) {

Table<Person> users = con.GetTable<Person>()

var query = from u in users
where low < u.Score && u.Score < high
select new { u.Id, u.Name };

foreach(var item in query)
{ Console.WriteLine("{0}: {1}", item.Id, item.Name); }

}

Ian Stark APL20 2010-03-17

Language Integrated Query

The special SQL-like syntax is sugar that expands into a sequence of
method invocations, using higher-order functions and anonymous closures.

float findUsersInRange(SqlConnection con, float low, float high) {

Table<Person> users = con.GetTable<Person>()

var query = users.Where(u => (low < u.Score && u.Score < high))
.Select(u => new { u.Id, u.Name }) ;

foreach(var item in query)
{ Console.WriteLine("{0}: {1}", item.Id, item.Name); }

}

Ian Stark APL20 2010-03-17

Language Integrated Query

This expansion into standard method calls opens up query handling to
compiler optimisation: we are no longer just executing an SQL string, but
building a structured query.

float findUsersInRange(SqlConnection con, float low, float high) {

Table<Person> users = con.GetTable<Person>()

var query = users.Where(u => (low < u.Score && u.Score < high))
.Select(u => new { u.Id, u.Name }) ;

foreach(var item in query)
{ Console.WriteLine("{0}: {1}", item.Id, item.Name); }

}

Ian Stark APL20 2010-03-17

LINQ limits

LINQ brings many good things:

Creating SQL queries from C# syntax
Static checking of syntax and database schema
Parameterization and abstraction
Compiler-led query amalgamation

But there are limitations:

SQL conversion is best-effort — it may fail at runtime
Abstraction not fully higher-order
Exposes concrete Expression type with special properties

Ian Stark APL20 2010-03-17

How it might be
Cooper sets out some examples, using the syntax of Links. It’s a
general-purpose functional language, with some syntax to make queries
look natural. (All examples are from the paper.)

Alice runs a local baseball league

fun overAgePlayers() { # Alice wants a list of players over 12
query { for (p <− players)

where (p.age > 12)
[(name = p.name)] }

}

The "query" block indicates that this should be translated to SQL

Here "for ... where" is a ’bag comprehension’ that gathers together # a
multiset of records satisfying the guard

Ian Stark APL20 2010-03-17

How it might be
Cooper sets out some examples, using the syntax of Links. It’s a
general-purpose functional language, with some syntax to make queries
look natural. (All examples are from the paper.)

We introduce the gratuitous complication of reversing player’s names

fun overAgePlayersReversed() {
query { for (p <− players)

where (p.age > 12)
[(name = reverse(p.name))] } # ERROR !

}

Because we specified a "query" block, the compiler raises
an error: SQL has no string reverse operation

Ian Stark APL20 2010-03-17

How it might be
Cooper sets out some examples, using the syntax of Links. It’s a
general-purpose functional language, with some syntax to make queries
look natural. (All examples are from the paper.)

Obtain team rosters as [(name:String, roster:[(playerName:String)])]
fun teamRosters() {
for (t <− teams)
[(name = t.name,
roster = for (p <− players)

where (p.team == t.name) [(playerName=p.name)])];
}
fun usablePlayers() { # Identify players on full teams
query { for (t <− teamRosters()) # For each team list

where (length(t.roster) >= 9) # If big enough
t.roster } # Add members to mailing list

}

Ian Stark APL20 2010-03-17

How it might be
Cooper sets out some examples, using the syntax of Links. It’s a
general-purpose functional language, with some syntax to make queries
look natural. (All examples are from the paper.)

/∗
Although teamRosters returned a nested collection, which cannot be
directly represented in SQL, we can still translate the overall query
using nested SELECT queries.

∗/

SELECT p.name AS playerName
FROM players AS p, teams AS t
WHERE

(SELECT COUNT(∗)
FROM players AS p2 WHERE p2.team = t.name) < 9

Ian Stark APL20 2010-03-17

How it might be
Cooper sets out some examples, using the syntax of Links. It’s a
general-purpose functional language, with some syntax to make queries
look natural. (All examples are from the paper.)

fun playersBySelectedTeams(pred) { # Higher−order function taking
query { # a predicate "pred" as argument
for (t <− teamRosters())
where (pred(t.roster)) # Can this be SQLized? It depends
t.roster }

}

fun fullTeam(list) { length(list) >= 9 }

fun seniorPlayers(list) { for (x <− list) where (x.age >= 15) [x] }

playersBySelectedTeams(fun(x) { fullTeam(seniorPlayers(x)) })

Ian Stark APL20 2010-03-17

How it might be
Cooper sets out some examples, using the syntax of Links. It’s a
general-purpose functional language, with some syntax to make queries
look natural. (All examples are from the paper.)

playersBySelectedTeams(fun(x) { fullTeam(seniorPlayers(x)) })

−− In this case, we can translate into SQL

SELECT p.name AS playerName
FROM players AS p, teams AS t

WHERE (SELECT COUNT(∗) FROM players AS p2
WHERE p2.team = t.name AND p2.age >= 15) >= 9

−− This requires expanding the predicate, and rearranging to
−− appropriate nest the SQL. Can we build a type system to check
−− all this in a modular way at compile time?

Ian Stark APL20 2010-03-17

Can this be done?

Cooper does not, in fact, present an implementation in the paper
(although an experimental one does exist).

Instead, he sets out three things:

A method for statically checking whether conversion is possible

A detailed explanation of a procedure to carry out the conversion

A proof that this always works

This is a standard approach in programming language research: after all,
from an algorithm and a proof you might build an implementation; but the
reverse is much harder.

One step further is to including a machine-checked proof;
this is rare as yet, but it’s the future.

Ian Stark APL20 2010-03-17

Types and effects

Static checking for SQLizability is done through a type and effect system.

Where a type system might have judgements like this:

x1 : S1, . . . , xn : Sn `M : T .

A type and effect system has judgements like this:

x1 : S1, . . . , xn : Sn `M : T ! e .

Here e is the set of possible effects associated with the evaluation of M.

Ian Stark APL20 2010-03-17

Deriving types and effects

A type and effect system comes with rules for deriving valid judgements.
For example:

Γ `M1 : [T] ! e1 Γ `M2 : [T] ! e2
Γ `M1 ++M2 : [T] ! e1 ∪ e2

Γ = x1 : S1 . . . xn : Sn

These rules are chained together to make a complete derivation.

As with plain type systems, it is possible to automatically infer many effect
annotations.

Ian Stark APL20 2010-03-17

Effects within types

The types and effects may interact, as in function abstraction and
application.

Γ , x : S `M : T ! e
Γ ` λx.M : S e−→ T ! ∅

Γ ` F : S e−→ T ! e1 Γ ` N : S ! e2
Γ ` FN : T ! (e1 ∪ e2 ∪ e)

Here function type S e−→ T includes a latent effect e, which emerges when
the function is applied to an argument.

Ian Stark APL20 2010-03-17

Effects for SQLizability

We need effects to track when code needs a feature not available in SQL.

We can do this with an effect noqy. For example:

(+) : int × int ∅−→ int length : [T] ∅−→ int print : string noqy−→ ()

The rule for typing a “query” block checks this:

Γ `M : T ! ∅ T has the form [(l : o)]
Γ ` query{M} : T ! ∅

Provided that the types check out, we can build arbitrary combinations of
query blocks, abstraction, higher-order functions, application,
comprehension, . . .

Ian Stark APL20 2010-03-17

Results

The paper sets out a rewrite system M M ′ which flattens out and
simplifies terms, with the following properties:

Types are preserved: if M : T ! ∅ and M M ′ then M ′ : T ! ∅.

Every term normalizes: M ∗ V for some V 6 .

If M : [(l : o)] ! ∅ then its normal form directly matches SQL
constructions.

The result is that if a term does not have the noqy effect, then it can
always be converted SQL. This might happen at compile time, run time,
or both: but it will always succeed.

Ian Stark APL20 2010-03-17

Summary

LINQ offers language integration for queries, but only best-effort
translation. Things can go wrong at runtime.

An effect system refines types with information about side-effects that
happen on execution.

We can construe “not available in SQL” as a side-effect.

Static inference and checking of types and effects is enough to know
in advance which terms can be turned into SQL queries.

Specific properties of types and effects for SQLizability:

Compositional, for modular checking
Supports arbitrary higher-order types
Complete integration of guest and host language terms
Compile-time guarantees

Ian Stark APL20 2010-03-17

The End

Please complete a course questionnaire, either on paper or online.
Paper copies can be left in the lecture theatre, or delivered to the ITO.

The Examination Timetable is available online:

http://www.registry.ed.ac.uk/Examinations/index.cfm

Good luck, and enjoy learning more programming languages.

I’ve worked with many languages, from BASIC to assembly code.
One of the last checkins I made when implementing generics for .NET,

C# and VB had a lot of x86 assembly code. My first job was in Prolog.
I think programmers should learn languages at all extremes.

Don Syme, F#
Ian Stark APL20 2010-03-17

http://www.registry.ed.ac.uk/Examinations/index.cfm

