
http://www.inf.ed.ac.uk/teaching/courses/apl

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Advances in Programming Languages
APL10: State Transformers

Ian Stark

School of Informatics
The University of Edinburgh

Thursday 11 February
Semester 2 Week 5

http://www.inf.ed.ac.uk/teaching/courses/apl
http://www.ed.ac.uk
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk


Foreword

Some Types in Haskell

This is the last of four lectures about some features of types and typing in
Haskell types, specifically:

Type classes

Multiparameter type classes, constructor classes,

Monads and interaction with the outside world

Encapsulating stateful computation

Ian Stark APL10 2010-02-11



Foreword

Some Types in Haskell

This is the last of four lectures about some features of types and typing in
Haskell types, specifically:

Type classes

Multiparameter type classes, constructor classes,

Monads and interaction with the outside world

Encapsulating stateful computation

Ian Stark APL10 2010-02-11



Preview

In this lecture we shall see two applications of monads, one a refinement of
the other.

The State monad from the Control.Monad.State library.
This makes it possible to describe sequential stateful computation
within a lazy functional language.

The ST and its runST operation from Control.Monad.ST
This allows more general stateful computation, allocating and
updating storage, with efficient in-place implementation; but
encapsulated so that it becomes indistinguishable from purely
functional code.

Ian Stark APL10 2010-02-11



Outline

1 The State monad

2 Encapsulating imperative computation

3 Close

Ian Stark APL10 2010-02-11



There’s a place for state

Purely functional languages are able to express many algorithms in concise
and modular fashion.

However, there remain some cases where known efficient (and convenient)
algorithms rely on mutable state of some kind:

Memoization, incrementally-modified hash tables;
Union/find;
Graph traversal and manipulation.

For these, we would like some way to:

Naturally express the imperative algorithm in Haskell;
Wrap it up so it can be combined with other, purely functional,
components.

Ian Stark APL10 2010-02-11



The State monad

module Control.Monad.State

newtype State s a = State { runState :: (s −> (a, s)) }

A value of type “State s a” represents a computation which manipulates a
state component of type “s” to return a result of type “a”.

A stateful computation taking inputs and returning results would have a
type like “Bool −> String −> State s (Int,Int)”.

Ian Stark APL10 2010-02-11



The State monad

module Control.Monad.State

newtype State s a = State { runState :: (s −> (a, s)) }

A value of type “State s a” represents a computation which manipulates a
state component of type “s” to return a result of type “a”.

State outState in

Result

A stateful computation taking inputs and returning results would have a
type like “Bool −> String −> State s (Int,Int)”.

Ian Stark APL10 2010-02-11



The State monad

module Control.Monad.State

newtype State s a = State { runState :: (s −> (a, s)) }

A value of type “State s a” represents a computation which manipulates a
state component of type “s” to return a result of type “a”.

State outState in

Inputs Results

A stateful computation taking inputs and returning results would have a
type like “Bool −> String −> State s (Int,Int)”.

Ian Stark APL10 2010-02-11



Monad operations

module Control.Monad.State

newtype State s a = State { runState :: (s −> (a, s)) }

instance Monad (State s a) where
return :: a −> State s a
(>>=) :: State s a −> (a −> State s b) −> State s b

The monad “return” simply gives back the value, leaving the state
unchanged; and “(>>=)” sequences two stateful computations, passing
the output state and result of the first as input to the second.

State outState in State in

s1 s2

State out

Ian Stark APL10 2010-02-11



Effects

module Control.Monad.State

newtype State s a = State { runState :: (s −> (a, s)) }

get :: State s s −− Fetch contents of state
put :: s −> State s () −− Update contents

modify :: (s −> s) −> State s () −− Modify contents

evalState :: State s a −> s −> a −− Run to result
execState :: State s a −> s −> s −− Run to final state

Ian Stark APL10 2010-02-11



Example

import Control.Monad.State

data Tree a = Leaf a | Node (Tree a) (Tree a) deriving (Show, Eq)

number :: Tree a −> Tree Int −− Number the leaves of
number t = evalState (walk t) 0 −− a tree from left to right

walk :: Tree a −> State Int (Tree Int) −− Number using state

walk (Leaf _) = do i <− get
put (i+1)
return (Leaf i)

walk (Node l r) = do l ’ <− walk l
r’ <− walk r
return (Node l’ r’)

Ian Stark APL10 2010-02-11



Outline

1 The State monad

2 Encapsulating imperative computation

3 Close

Ian Stark APL10 2010-02-11



Source paper

J. Launchbury and S. L. Peyton Jones.
Lazy functional state threads.
In Proceedings of the 1994 ACM SIGPLAN Conference on
Programming Language Design and Implementation, SIGPLAN
Notices, 29(6), pages 24–35. ACM Press, June 1994.

The “State” monad makes it possible to write stateful computations in an
imperative style, but does not enforce this: code might duplicate or reset
the state.

This paper showed how to build a richer “ST” (state transformer) monad
which supports more operations, while guaranteeing that the state is
single-threaded, allowing for general imperative algorithms and efficient
implementation.

Ian Stark APL10 2010-02-11

http://dx.doi.org.ezproxy.webfeat.lib.ed.ac.uk/10.1145/178243.178246


The ST monad is a State monad

module Control.Monad.ST

data ST s a

instance Monad (ST s a) where
return :: a −> State s a
(>>=) :: State s a −> (a −> State s b) −> State s b

State outState in State in

s1 s2

State out

Ian Stark APL10 2010-02-11



Mutable variables in the ST monad

module Control.Monad.ST

data ST s a

newVar :: a −> ST s (MutVar s a)
readVar :: MutVar s a −> ST s a
writeVar :: MutVar s a −> a −> ST s ()

A value of type “MutVar s a” is a reference to a mutable variable, storing
type “a” in a state of type “s”.

Operation “newVar” creates and initialises a fresh variable, “readVar”
reports its current value, and “writeVar” updates it.

Any state thread can create any number of “MutVar” variables.

Ian Stark APL10 2010-02-11



Example with mutable variables

import Control.Monad.ST

swapVar :: MutVar s a −> MutVar s a −> ST s ()

swapVar p q = do x <− readVar p
y <− readVar q
writeVar p y
writeVar q x
return ()

Here “swapVar” will take two variables return the computation that
exchanges their contents.

Notice that the variables must share the same state type “s”.

Ian Stark APL10 2010-02-11



Running a state transformer

module Control.Monad.ST

runST :: ST s a −> a −− Can we do this?

We might try to write an operation that creates a fresh state of type “s”,
and then runs a computation within that. But there is a problem.

let v = runST (newVar True) −− Create a fresh variable here ...

in

runST (readVar v) −− ... best not to try and read it here

Ian Stark APL10 2010-02-11



Running a state transformer

module Control.Monad.ST

runST :: ST s a −> a −− Can we do this?

We might try to write an operation that creates a fresh state of type “s”,
and then runs a computation within that. But there is a problem.

let v = runST (newVar True) −− Create a fresh variable here ...

in

runST (readVar v) −− ... best not to try and read it here

Ian Stark APL10 2010-02-11



A better type for runST

module Control.Monad.ST

runST :: (forall s. ST s a) −> a −− Rank 2 polymorphism

The solution is to require that “runST” is only ever applied to
computations that are polymorphic in the state type — they don’t require
any specific structure in the state, or export it.

An ST-computation can create fresh variables, read and write them, but
everything must stay local.

Higher rank polymorphism is an extension to regular Haskell: types like
this can be checked, but in general not inferred.

Ian Stark APL10 2010-02-11



Isolated state threads

runST

runST

runST

Ian Stark APL10 2010-02-11



Arrays in ST

data MutArray s i e

newArr :: Ix i => (i,i) −> e −> ST s (MutArray s i e)

readArr :: Ix i => MutArray s i e −> i −> ST s e

writeArr :: Ix i => MutArray s i e −> i −> e −> ST s ()

freezeArr :: Ix i => MutArray s i e −> ST s (Array i e)

Mutable variables and imperative arrays are enough to implement classic
imperative algorithms, both simple and complex.

Externally, code that uses “ST s a” and “runST” can be used exactly as it
was purely functional, and the polymorphic typing requirements of “runST”
ensure that its state will neither escape nor be disrupted by other code.

Ian Stark APL10 2010-02-11



Arrays in ST

data MutArray s i e

newArr :: Ix i => (i,i) −> e −> ST s (MutArray s i e)

readArr :: Ix i => MutArray s i e −> i −> ST s e

writeArr :: Ix i => MutArray s i e −> i −> e −> ST s ()

freezeArr :: Ix i => MutArray s i e −> ST s (Array i e)

Because type “ST s a” is only accessible through these effects, it is certain
that the state component “s” will be single-threaded: which allows for
efficient implementation and in-place update.

What is more, this can be handled entirely by standard compiler rewriting
optimisations: passing a single token around will ensure data dependencies
are respected; yet the actual variables and arrays can be allocated in memory
and updated in place. We even get lazy evaluation of these state threads.

Ian Stark APL10 2010-02-11



IO is ST

data RealWorld −− No constructors, entirely abstract

type IO a = ST RealWorld a −− IO computations act on the real world

This is exactly how the “IO” monad is implemented: with an entirely
abstract state type, whose concrete realisation is the external world.

Because “IO a” specifies a specific state type “RealWorld”, there is no
possibility of applying “runST”, whose argument must be
state-independent.

This is good, because Haskell has no operation to create or destroy the
“RealWorld” at will. Instead, the whole program has type “IO a”, and it is
run in the actual “RealWorld”.

Ian Stark APL10 2010-02-11



Outline

1 The State monad

2 Encapsulating imperative computation

3 Close

Ian Stark APL10 2010-02-11



Summary

In this lecture we saw two applications of monads, one a refinement of the
other.

The State monad from the Control.Monad.State library.
This makes it possible to describe sequential stateful computation
within a lazy functional language.

The ST and its runST operation from Control.Monad.ST
This allows more general stateful computation, allocating and
updating storage, with efficient in-place implementation; but
encapsulated so that it becomes indistinguishable from purely
functional code.

Ian Stark APL10 2010-02-11



Homework

Read the following paper, describing runST, its applications and
implementation.

J. Launchbury and S. L. Peyton Jones.
Lazy functional state threads.
In Proceedings of the 1994 ACM SIGPLAN Conference on
Programming Language Design and Implementation, SIGPLAN
Notices, 29(6), pages 24–35. ACM Press, June 1994.

Also available in a longer version, with additional examples:

J. Launchbury and S. L. Peyton Jones.
State in Haskell.
LISP and Symbolic Computation, 8(4):293–342, December 1995.

Ian Stark APL10 2010-02-11

http://dx.doi.org.ezproxy.webfeat.lib.ed.ac.uk/10.1145/178243.178246
http://dx.doi.org.ezproxy.webfeat.lib.ed.ac.uk/10.1007/BF01018827

	The State monad
	Encapsulating imperative computation
	Close

