
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Advances in Programming Languages
APL9: Coursework Assignment, Review

David Aspinall and Ian Stark

School of Informatics
The University of Edinburgh

Monday 9th February 2009
Semester 2 Week 5

http://www.ed.ac.uk
http://hompeages.inf.ed.ac.uk/da
http://homepages.ed.ac.uk/stark

Outline

1 Course schedule

2 Reminder of topics

3 An example: Alice ML

4 Writing and submitting

5 Summary

Outline

1 Course schedule

2 Reminder of topics

3 An example: Alice ML

4 Writing and submitting

5 Summary

Course schedule

Four main topics, one shorter topic:
Extensible records for typing objects in OCaml
Specifying and statically checking behaviour of Java code
LINQ and cross-language integration in .NET
Patterns and abstractions for programming concurrent code
Mobile code that carries its own proof of safety

Plus guest lectures and assignment lectures.

Assignment schedule

Week 3 Monday 26 January: Topic announcement

Week 5 Monday 9th February: Assignment review lecture

Week 5 Friday 13 February: Intermediate report

Week 8 Friday 6 March: Final report

Next: intermediate report

The first report should contain:
Your student number;
The topic you have chosen;
Three suitable references, which you have read; and
A screenshot by you of the selected system in action.

One reference must be to a published paper; the other two may be too, but could
also be white papers, web tutorials, manuals, or similar. In all cases provide
enough information for someone else to obtain the document.
To create the screenshot, you will need to have your chosen system downloaded,
installed, and running on a suitable machine.

The report must be submitted as a PDF file called choice.pdf, using the submit
command given on the coursework web page.

http://www.inf.ed.ac.uk/teaching/courses/apl/2008-2009/assignment.html

Outline

1 Course schedule

2 Reminder of topics

3 An example: Alice ML

4 Writing and submitting

5 Summary

Jif

Information flow in Jif
The Jif compiler extends the Java language with annotations for static
analysis of security properties relating to the flow of information.

These annotations describe restrictions on how information is to be used:
which principals control which information, and what they trust other
principals to do with it. This gives increased assurance that trusted and
untrusted information is used only according to explicit security policies.

Deputy

Memory annotations in Deputy
The Deputy project at Berkeley is developing a C compiler that can
prevent a number of common programming errors.

In particular, Deputy provides type annotations with which programmers
can describe the intended behaviour of pointers. The compiler will then
apply suitable static and run-time checks to make sure these intentions are
satisfied.

Haskell STM library

Software Transactional Memory in Haskell
The STM library for the Glasgow Haskell Compiler (GHC) provides
high-level language support for coordinating concurrent computation,
where multiple threads act simultaneously on shared datastructures.

Remarkably, STM does this without using locks. Instead, it uses efficient
and optimistic software transactions, giving freedom from deadlock and
promoting non-interfering concurrency. These transactions are modular
and composable: small transactions can be glued together to make larger
ones. Moreover, implementing this within the Haskell type system gives
static guarantees that transactions are used correctly.

Hadoop

Petascale computing with Hadoop
The software platform Hadoop implements MapReduce, a programming
model for massively distributed computation introduced by Google.

MapReduce splits input into pieces, applies a function in parallel to each
piece, then merges the results together. Using a distributed file system,
the framework can compute across thousands of machines, using
redundancy and recovery mechanisms. MapReduce operations are
programmed using Java and the Hadoop libraries, but the more abstract
language Pig Latin can be used to compile to Hadoop instead.

Multiple inheritance

Multiple inheritance in Scala with traits and mixins
The Scala language provides traits and mixins as modularisation
constructs.

Mixin composition solves the infamous multiple inheritance ambiguity
problem: does a class A that inherits from B and from C implement A.m
as B.m or C.m? Java forbids multiple inheritance but provides interfaces.
However, interfaces cannot contain implementations, leading to code
duplication. Scala’s trait and mixin constructs remedy this.

Outline

1 Course schedule

2 Reminder of topics

3 An example: Alice ML

4 Writing and submitting

5 Summary

Futures and promises

Futures and promises in Alice ML
The Alice ML language is based on Standard ML, with several extensions
to support distributed concurrent programming.

In particular it provides futures and promises for lightweight concurrency:
a future represents the result of a computation that may not yet be
available, and a promise is a handle to build your own future.

Project homepage

Downloading and installing

Might not be entirely trivial! Follow instructions carefully.
Try your preferred environment/machine, resort to DICE as a fallback.
You need to try this now, if you haven’t done so already.

For Alice, I chose to download the RPM files to install onto my Fedora Linux machine. This
required first finding and installing some additional libraries, as my OS is newer than the one for
which Alice was packaged.

wget http://www.ps.uni-sb.de/alice/download/rpm/alice-complete-1.4-1.i386.rpm
wget http://www.ps.uni-sb.de/alice/download/rpm/gecode-1.3.1-1.i386.rpm

rpm -ivh alice* gecode*

Trying examples

Learning about the topic

Next questions:
how do I use futures?
what advantages do they bring? what drawbacks?
how are they related to other language features?
do they have well understood foundations? a good implementation?
how and when were futures invented?

Resources

Useful sites to search the academic literature:
http://citeseerx.ist.psu.edu/ CiteSeerX, formerly the best search and

citation index for computer science.
http://www.informatik.uni-trier.de/~ley/db/ DBLP: an invaluable

bibliography, with links to electronic editions.
http://scholar.google.com beware: Google’s idea of an academic

article is broader than most.
Lambda the Ultimate: Programming languages weblog.
Some astonishing enthusiasm for heavy programming language theory.
http://developers.slashdot.org
One channel on the self-proclaimed News for Nerds. Occasional
programming language issues, lots of comments but can be thin on
content. Beware of the trolls.
comp.lang.<almost-any-language>, comp.lang.functional
Programming language newsgroups, some very busy. c.l.f has a
endless supply of questioners, and some very patient responders.

http://citeseerx.ist.psu.edu/
http://www.informatik.uni-trier.de/~ley/db/
http://scholar.google.com
http://lambda-the-ultimate.org/
http://developers.slashdot.org

One resource for everything?

Wikipedia is an invaluable first stop resource for many topics, but has a
number of drawbacks for scholarly use:

it’s a wiki! — pages can change at any time, and be changed by
anyone;
it is an electronic format: a URL alone is not a sufficient citation;
by definition, it is not a primary source: peer reviewed articles,
whitepapers and system documentation will be (more) authoritative.

See Wikipedia’s own entries on caution before citing Wikipedia and
caution on academic use of Wikipedia.

http://en.wikipedia.org/wiki/Citing_Wikipedia
http://en.wikipedia.org/wiki/Wikipedia:Academic_use

Resources

Finding relevant papers

Finding relevant papers

First references for Alice ML

The online Alice ML documentation is excellent for potential users.
The papers explain the design and implementation of the language.
The first paper is technical (but fun for typed λ-calculus fans).
The second is a practical overview of Alice ML language features.

References
Andreas Rossberg. Alice Manual: A Tour to Wonderland. At
http://www.ps.uni-sb.de/alice/manual/tour.html. Retrieved on 8th
February 2009, at 22:00 UTC.
Joachim Niehren, Jan Schwinghammer, Gert Smolka: A concurrent
lambda calculus with futures. Theoretical Computer Science. 364(3):
338-356 (2006)
Andreas Rossberg, Didier Le Botlan, Guido Tack, Thorsten
Brunklaus, Gert Smolka: Alice through the looking glass. Trends in
Functional Programming 2004: 79-95.

http://www.ps.uni-sb.de/alice/manual/tour.html

Outline

1 Course schedule

2 Reminder of topics

3 An example: Alice ML

4 Writing and submitting

5 Summary

Report formats

Each report must be submitted electronically as a PDF document. The
recommended method for creating these is pdflatex with the article
document class.
In addition, OpenOffice is freely available for Windows and Linux, installed on
Informatics machines, and can write PDF. Mac OS X natively creates PDF.
Microsoft provide PDF output as a plugin for Word 2007.

Submission instructions are on the coursework web page.

http://www.openoffice.org
http://www.inf.ed.ac.uk/teaching/courses/apl/2008-2009/assignment.html

Final report
Suggested outline:

Heading Title, date, author
Abstract This report describes ...

Introduction Content summary, overview of report structure
Context The problem domain

〈Main topic〉 What it is, how it works, advantages and limitations
Example Annotated code, explanation, screenshot

Salt: the example must in some way concern cooking or
catering (e.g., recipe databases, canteen inventory, . . .)

Resources For notable resources used (article, tutorial, manual), give a
summary in your own words of what it contains

Related work Other approaches to the problem
Conclusion What 〈topic〉 does, good and bad points

Bibliography Full references for all resources used

Total 8–10 A4 pages. See course coursework web page for further details.

http://www.inf.ed.ac.uk/teaching/courses/apl/2008-2009/assignment.html

Exemplar reports

March 13, 2008

Abstract

Various languages have tried to allow useful tools and solutions to
concurrent programming, Alice ML is one of these. Alice ML uses
futures and promises to help solve the problem of data synchronisa-
tion and concurrency. This report explains how these features work,
displays a detailed example, performs comparisons to other language
solutions and presents related work in this area.

1 Introduction

Computer technology is changing and increasing all the time. Multi core sys-

will have to be parallelised. This leads to the development of concurrent pro-
gramming. Concurrent programming is difficult to do well in practice. The

overcome the many disadvantages and difficulties posed by this solution.
Alice ML is an extension of Standard ML and supports concurrency by

the use of futures and promises. This solution to concurrent programming
appears to be a valid and reasonable one. This report explains futures and
promises in Alice ML in more detail, it provides examples and mentions the
advantages and disadvantages to this solution. Other language solutions to
the concurrent programming problem are also mentioned and compared to
Alice ML

1

Futures and Promises in Alice ML

tems are being produced yet to truly exploit this feature of systems, programs

concepts and benefits of a good concurrent program are worthwhile. In-
creased speed, efficient use of resources, better user response time etc are
a few of the advantages.

A dominant solution to concurrent programming seems
to be threads. This solution is not perfect and many languages have tried to

Regular Expression Types and Patterns in CDuce
Advances in Programming Languages

Paul McEwan (0452900)
14/03/2008

Abstract
This report examines the CDuce language, a typed functional programming language designed for
general purpose programming. Unlike other functional programming languages, CDuce
incorporates native support for XML documents in the language. This report looks at the language,
related work and then at the use of regular expression types and patterns. Specifically, how these
particular types and patterns are used to query/manipulate the XML data, as well as allow static
checking by the compiler that the XML data used is always valid.

1. Introduction
The CDuce language is a functional, typed programming language allowing the creation of general
purpose programs. The key difference between CDuce and other typed, functional programming
languages (such as Haskell and ML) is that it was designed to be used with XML from the start. The
language has features included that allow the programer to manipulate and query XML trees
directly in the code, instead of using additional tree parsers (such as Document Object Model
(DOM) parsers). The language allows for XML files to be read in or created directly in the code and
be exported back to a file. The XML handled by programs written in CDuce is guaranteed to be
valid (both well-formed/syntactically correct and corresponding to a specific structure).

Of particular interest, the CDuce language allows the inclusion of regular expressions when
defining types and patterns. The use of these regular expressions allows the programmer to not only
enquire and alter the XML, it also allows the compiler to perform checks statically on the code to
ensure the XML is valid. This report first examines the CDuce language at a high level (§2), then a
look at some related work (including languages which inspired the creation of CDuce) (§3). The use
of regular expressions in patterns and types will then be examined (§4) with an example program
created using these features of the language (§5). Finally, the report will be concluded by looking
back at the use of regular expressions in the types and patterns of the CDuce language (§6).

2. CDuce
The paper [CDuceXCGPL] presents CDuce in detail and is an ideal resource to use to understand
the language. Here, points raised in the paper shall be summarised in order to present a general
introduction to the CDuce language: what it is, how it came about and how it works.

As stated previously, the CDuce language is a typed functional programming language designed to
allow the processing of XML data directly in the language while still being a “general purpose”
language (i.e. not specific to XML processing but allowing programs to be created that include the
functionality). The CDuce project was an off-shoot extension of the XDuce language, but was
designed to be less “XML-centric”. To this effect, the CDuce language extends upon XDuce by
addressing - what the paper referred to as - limitations in three areas:

• Type System
The XDuce type system allowed the user to create types specific to dealing with XML data,
which included having “regular expression types” and “type-based patterns”. The use of the

1

See the course web page for two good submissions from last year.

Suitable working practices

Working practices
Start with a blank document; all the words must be yours.
Do not cut and paste from other documents.

Except for direct quotations, which must have source declared.
Do not let others read your text; nor read theirs.

Aims of this coursework
To learn about the chosen topic
To improve researching and learning skills
To demonstrate said knowledge and skills

The tangible outcome is a document, composed and written by you,
demonstrating what you have learnt.

Outline

1 Course schedule

2 Reminder of topics

3 An example: Alice ML

4 Writing and submitting

5 Summary

Summary

Topics
Information flow in Jif
Memory annotations in Deputy
Software Transactional Memory in Haskell
Petascale computing with Hadoop
Multiple inheritance in Scala with traits and mixins

Intermediate report
Topic choice, three initial references, screenshot.
Due this Friday, 13th February.

Final report
Introduction and discussion of the topic;
example annotated code, screenshots;
resources consulted and related work;
concluding summary and opinions;
bibliography with proper references.
Due: Friday 6th March.

	Course schedule
	Reminder of topics
	An example: Alice ML
	Writing and submitting
	Summary

