
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Advances in Programming Languages
APL8: ESC/Java2

David Aspinall
(including slides by Ian Stark and material

adapted from ESC/Java2 tutorial by
David Cok, Joe Kiniry and Erik Poll)

School of Informatics
The University of Edinburgh

Thursday 5th February 2009
Semester 2 Week 4

http://www.ed.ac.uk
http://hompeages.inf.ed.ac.uk/da
http://www.inf.ed.ac.uk/~stark

Topic: Some Formal Verification

This is the last of three lectures about some techniques and tools for
formal verification, specifically:

Hoare logic

JML: The Java Modeling Language

ESC/Java2: The Extended Static Checker for Java

JML review

The Java Modeling Language, JML, combines model-based and contract
approaches to specification.

Some design features:

The specification lives close to the code
Within the Java source, in annotation comments /∗@...@∗/

Uses Java syntax and expressions
Rather than a separate specification language.

Common language for many tools and analysis
Tools add their own extensions, and ignore those of others.

Web site: jmlspecs.org

jmlspecs.org

ESC/Java2

“The Extended Static Checker for Java version 2 (ESC/Java2) is a
programming tool that attempts to find common run-time errors in
JML-annotated Java programs by static analysis of the program code
and its formal annotations.”

http://kind.ucd.ie/products/opensource/ESCJava2

It is available both as a command-line tool and a plugin for the Eclipse
development environment.

ESC/Java performs different kinds of check:
checks based on types, flow of data, existing Java declarations;
JML annotation checking that can be carried out directly;
logical assertions that need an external proof tool.

These last ones are passed to the Simplify automated theorem prover.

http://kind.ucd.ie/products/opensource/ESCJava2

Many different checks

ESC/Java2 checks for very many things. These include:

Null pointer dereference
Negative array index
Array index too large
Invalid type casts
Array storage type mismatch
Divide by zero
Negative array size
Unreachable code

Deadlock in concurrent code
Race condition
Unchecked exception
Object invariant broken
Loop invariant broken
Precondition not satisfied
Postcondition not satisfied
Assertion not satisfied

JML annotations and assertions can help with all of these.

Soundness and Completeness

As a practical tool ESC/Java makes some compromises: it is not perfect.
Not complete: it may complain about a correct program.
Not sound: it may approve an incorrect program.

However, it reliably checks straightforward specifications, and
automatically points out many potential bugs.

In particular:
Distinguishes between errors (definitely bad), warnings (could be bad)
and cautions (can’t be sure it’s good).
Sources of unsoundness and incompleteness are documented.

. . . as we know, there are “known knowns”; there are things we know we know. We also know
there are “known unknowns”; that is to say we know there are some things we do not know.

But there are also “unknown unknowns” — the ones we don’t know we don’t know.
(Donald Rumsfeld, 2002)

Soundness and Completeness

As a practical tool ESC/Java makes some compromises: it is not perfect.
Not complete: it may complain about a correct program.
Not sound: it may approve an incorrect program.

However, it reliably checks straightforward specifications, and
automatically points out many potential bugs.

In particular:
Distinguishes between errors (definitely bad), warnings (could be bad)
and cautions (can’t be sure it’s good).
Sources of unsoundness and incompleteness are documented.

. . . as we know, there are “known knowns”; there are things we know we know. We also know
there are “known unknowns”; that is to say we know there are some things we do not know.

But there are also “unknown unknowns” — the ones we don’t know we don’t know.
(Donald Rumsfeld, 2002)

History

ESC/Modula-3 DEC Systems Research Center (SRC) 1991–1996

ESC/Java Compaq SRC, then Hewlett-Packard 1997–2002

ESC/Java2 University of Nĳmegen, University College Dublin 2004–

K. Rustan M. Leino. Extended Static Checking: A Ten-Year Perspective in
Informatics: 10 Years Back, 10 Years Ahead. Lecture Notes in Computer
Science 2000, Springer.

Demo

ESC/Java2 in Eclipse

Common specification idioms: non null

JML and ESC/Java2 introduce keywords for common specifications.

One of the most common specification requirements in Java is that objects
be non-null. That’s because one of the most common Java programming
errors is NullPointerException.

//@ non_null
Object o;

Now every method invocation on o is known to not cause an exception,
but every assignment to s must be checked to be non-null.

This is so important that it is about to enter the Java language as an
official annotation @NonNull, to be exploited by ordinary compilers.

I call it my billion-dollar mistake. It was the invention of the null reference in 1965. [. . .] My
goal was to ensure that all use of references should be absolutely safe, with checking performed

automatically by the compiler. But I couldn’t resist the temptation to put in a null reference
(Tony Hoare, 2009)

Common specification idioms: non null

JML and ESC/Java2 introduce keywords for common specifications.

One of the most common specification requirements in Java is that objects
be non-null. That’s because one of the most common Java programming
errors is NullPointerException.

//@ non_null
Object o;

Now every method invocation on o is known to not cause an exception,
but every assignment to s must be checked to be non-null.

This is so important that it is about to enter the Java language as an
official annotation @NonNull, to be exploited by ordinary compilers.

I call it my billion-dollar mistake. It was the invention of the null reference in 1965. [. . .] My
goal was to ensure that all use of references should be absolutely safe, with checking performed

automatically by the compiler. But I couldn’t resist the temptation to put in a null reference
(Tony Hoare, 2009)

Behavioural subtyping

Part of the object-oriented paradigm: an object in a subclass can behave
like an object in a superclass.

Sometimes known as Liskov’s principle of substitutivity:

properties that can be proved using the specification of an object’s
presumed type should hold even though the object is actually a subtype
of that type [Liskov and Wing, 1994]

This is captured by requiring, when A extends B
each invariant in subclass A =⇒ an invariant in B.
precondition for A.m ⇐= precondition for B.m
postcondition for A.m =⇒ postcondition for B.m

Inherited specifications

Behavioural subtyping is ensured by inherited specifications. A child class
automatically inherits the specification of its parent.

class Parent {
//@ requires i >= 0;
//@ ensures \result >= i;
int m(int i){ ... }

}
class Child extends Parent {

//@ also
//@ requires i <= 0
//@ ensures \result <= i;
int m(int i){ ... }

}

Inherited specifications: a puzzle

The specification for Child is short for:

class Child extends Parent {
/∗@ requires i >= 0;
@ ensures \result >= i;
@ also
@ requires i <= 0
@ ensures \result <= i;
@∗/

int m(int i){ ... }
}

What can the result of m(0) be?

Inherited specifications: the answer

This specification is equivalent to:

class Child extends Parent {
/∗@ requires i <= 0 || i >= 0;
@ ensures i >= 0 ==> \result >= i;
@ ensures i <= 0 ==> \result <= i;
@∗/

int m(int i){ ... }
}

moral: take care specifying methods that may be overridden
complex specifications may use a test

typeof(this)==\type(Parent)

to guard properties that are likely to change in child classes.

Inherited specifications: the answer

This specification is equivalent to:

class Child extends Parent {
/∗@ requires i <= 0 || i >= 0;
@ ensures i >= 0 ==> \result >= i;
@ ensures i <= 0 ==> \result <= i;
@∗/

int m(int i){ ... }
}

moral: take care specifying methods that may be overridden
complex specifications may use a test

typeof(this)==\type(Parent)

to guard properties that are likely to change in child classes.

Methods leading to madness

Imperative programs can be very difficult to verify because of reference
escape and aliasing.

class MyClass {
int i ;

//@ modifies i;
void m(MyClass o) {
i = 3;
o. i = 2; // ESC/Java2 gives a warning

}

Frame conditions

When verifying, we want to use frame conditions that say what stays the
same when a method is executed.

Usually we want to assume that as much as possible is unchanged, but the
conservative default in ESC/Java2 is:

//@ modifies \everything

Another example where the functional paradigm is very useful:

//@ pure
public int getX() { return x; }

The pure annotation implies modifies \nothing.

JML4 and ESC4

ESC/Java2 and other JML tools
have an old-fashioned batch
mode architecture
JML4 proposes an Integrated
Verification Environment
. . . integrated with Eclipse JDT
. . . allowing multi-threaded
verification, with per-method
and per-class parallelism JML4 compiler phases

from James et al, Distributed, Multi-threaded
Verification of Java Programs, SAVCBS 2008.

Summary

This is the last of three lectures about some techniques and tools for
formal verification, specifically:

Hoare logic

JML: The Java Modeling Language

ESC/Java2: The Extended Static Checker for Java

	Common idioms
	Behavioural subtyping
	Frame conditions
	Future of ESC/Java
	Summary

