
http://www.inf.ed.ac.uk/teaching/courses/apl/

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Advances in Programming Languages
APL1: What’s so important about language?

Ian Stark

School of Informatics
The University of Edinburgh

Monday 12 January 2009
Semester 2 Week 1

http://www.inf.ed.ac.uk/teaching/courses/apl/
http://www.ed.ac.uk
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

What matters in a programming language?

Easy starter questions.

Name some programming languages.

Identify some of their features and characteristics.

We might like a language that is:

Easy to learn, quick to write, expressive, concise, powerful, supported,
well-provided with libraries, cheap, popular, . . .

It might help us to write programs that are:

Readable, correct, fast, reliable, predictable, maintainable, secure,
robust, portable, testable, composable, . . .

Ian Stark APL1 2009-01-12

What matters in a programming language?

Easy starter questions.

Name some programming languages.

Identify some of their features and characteristics.

We might like a language that is:

Easy to learn, quick to write, expressive, concise, powerful, supported,
well-provided with libraries, cheap, popular, . . .

It might help us to write programs that are:

Readable, correct, fast, reliable, predictable, maintainable, secure,
robust, portable, testable, composable, . . .

Ian Stark APL1 2009-01-12

What matters in a programming language?

Easy starter questions.

Name some programming languages.

Identify some of their features and characteristics.

We might like a language that is:

Easy to learn, quick to write, expressive, concise, powerful, supported,
well-provided with libraries, cheap, popular, . . .

It might help us to write programs that are:

Readable, correct, fast, reliable, predictable, maintainable, secure,
robust, portable, testable, composable, . . .

Ian Stark APL1 2009-01-12

What matters in a programming language?

Easy starter questions.

Name some programming languages.

Identify some of their features and characteristics.

We might like a language that is:

Easy to learn, quick to write, expressive, concise, powerful, supported,
well-provided with libraries, cheap, popular, . . .

It might help us to write programs that are:

Readable, correct, fast, reliable, predictable, maintainable, secure,
robust, portable, testable, composable, . . .

Ian Stark APL1 2009-01-12

Shaping the conceivable

Languages frame the way we think, and the programs we can imagine.

Sapir-Whorf Hypothesis
We dissect nature along lines laid down by our native language

This claim is not without controversy; both in its original domain of linguis-
tics, and as more recently applied to programming languages.

Wittgenstein: The limits of my language mean the limits of my world
[Tractatus Logico-Philosophicus, 1922]

Orwell: The purpose of Newspeak was not only to provide a medium of
expression for the world-view and mental habits proper to the devotees of
Ingsoc, but to make all other modes of thought impossible [1984, 1949]

Perlis: A language that doesn’t affect the way you think about
programming, is not worth knowing [Epigrams on Programming, 1982]

Ian Stark APL1 2009-01-12

Shaping the conceivable

Languages frame the way we think, and the programs we can imagine.

Sapir-Whorf Hypothesis
We dissect nature along lines laid down by our native language

Boole: Language is an instrument of human reason, not merely a medium
for the expression of thought [An Investigation of the Laws of Thought, 1854]

Wittgenstein: The limits of my language mean the limits of my world
[Tractatus Logico-Philosophicus, 1922]

Orwell: The purpose of Newspeak was not only to provide a medium of
expression for the world-view and mental habits proper to the devotees of
Ingsoc, but to make all other modes of thought impossible [1984, 1949]

Perlis: A language that doesn’t affect the way you think about
programming, is not worth knowing [Epigrams on Programming, 1982]

Ian Stark APL1 2009-01-12

Shaping the conceivable

Languages frame the way we think, and the programs we can imagine.

Sapir-Whorf Hypothesis
We dissect nature along lines laid down by our native language

Boole: Language is an instrument of human reason, not merely a medium
for the expression of thought [An Investigation of the Laws of Thought, 1854]

Wittgenstein: The limits of my language mean the limits of my world
[Tractatus Logico-Philosophicus, 1922]

Orwell: The purpose of Newspeak was not only to provide a medium of
expression for the world-view and mental habits proper to the devotees of
Ingsoc, but to make all other modes of thought impossible [1984, 1949]

Perlis: A language that doesn’t affect the way you think about
programming, is not worth knowing [Epigrams on Programming, 1982]

Ian Stark APL1 2009-01-12

Shaping the conceivable

Languages frame the way we think, and the programs we can imagine.

Sapir-Whorf Hypothesis
We dissect nature along lines laid down by our native language

Boole: Language is an instrument of human reason, not merely a medium
for the expression of thought [An Investigation of the Laws of Thought, 1854]

Wittgenstein: The limits of my language mean the limits of my world
[Tractatus Logico-Philosophicus, 1922]

Orwell: The purpose of Newspeak was not only to provide a medium of
expression for the world-view and mental habits proper to the devotees of
Ingsoc, but to make all other modes of thought impossible [1984, 1949]

Perlis: A language that doesn’t affect the way you think about
programming, is not worth knowing [Epigrams on Programming, 1982]

Ian Stark APL1 2009-01-12

Shaping the conceivable

Languages frame the way we think, and the programs we can imagine.

Sapir-Whorf Hypothesis
We dissect nature along lines laid down by our native language

Boole: Language is an instrument of human reason, not merely a medium
for the expression of thought [An Investigation of the Laws of Thought, 1854]

Wittgenstein: The limits of my language mean the limits of my world
[Tractatus Logico-Philosophicus, 1922]

Orwell: The purpose of Newspeak was not only to provide a medium of
expression for the world-view and mental habits proper to the devotees of
Ingsoc, but to make all other modes of thought impossible [1984, 1949]

Perlis: A language that doesn’t affect the way you think about
programming, is not worth knowing [Epigrams on Programming, 1982]

Ian Stark APL1 2009-01-12

That’s a bit philosophical

Does this really happen? Can programming languages help us write new
kinds of program? Or just stop us from writing bad ones?

LISP S-expressions, metaprogramming, treating code as data.

Higher-order functions. For example, parser combinators:

expr = (expr ‘then‘ opn ‘then‘ expr) ‘or‘ term
opn = (char ’+’) ‘or‘ (char ’-’)
term = ...

Laziness for infinite datastructures:

odds = 3 : [x+2 | x<-odds] -- Self-referential list

pi = g(1,180,60,2) where -- Gibbons’s spigot
g(q,r,t,i) =

let (u,y)=(3*(3*i+1)*(3*i+2),div(q*(27*i-12)+5*r)(5*t))
in y : g(10*q*i*(2*i-1),10*u*(q*(5*i-2)+r-y*t),t*u,i+1)

[Your suggestion here. . .]

Ian Stark APL1 2009-01-12

That’s a bit philosophical

Does this really happen? Maybe.

LISP S-expressions, metaprogramming, treating code as data.

Higher-order functions. For example, parser combinators:

expr = (expr ‘then‘ opn ‘then‘ expr) ‘or‘ term
opn = (char ’+’) ‘or‘ (char ’-’)
term = ...

Laziness for infinite datastructures:

odds = 3 : [x+2 | x<-odds] -- Self-referential list

pi = g(1,180,60,2) where -- Gibbons’s spigot
g(q,r,t,i) =

let (u,y)=(3*(3*i+1)*(3*i+2),div(q*(27*i-12)+5*r)(5*t))
in y : g(10*q*i*(2*i-1),10*u*(q*(5*i-2)+r-y*t),t*u,i+1)

[Your suggestion here. . .]

Ian Stark APL1 2009-01-12

Programmability

One of the most significant feature of computers is the fact that they are
programmable. Day-to-day, this is astoundingly underused.

Programmability means that computers can always do more. Best of all,
you can program new ways to program.

Turing writing about the Automatic Computing Engine ACE:

Instruction tables will have to be made up by mathematicians with
computing experience and perhaps a certain puzzle-solving ability.
There will probably be a good deal of work of this kind to be done, ...
This process of constructing instruction tables should be very
fascinating. There need be no real danger of it ever becoming a
drudge, for any processes that are quite mechanical may be turned over
to the machine itself.

[Proposed Electronic Calculator, 1945]

Ian Stark APL1 2009-01-12

Programmability

One of the most significant feature of computers is the fact that they are
programmable. Day-to-day, this is astoundingly underused.

Programmability means that computers can always do more. Best of all,
you can program new ways to program.

Turing writing about the Automatic Computing Engine ACE:

Instruction tables will have to be made up by mathematicians with
computing experience and perhaps a certain puzzle-solving ability.
There will probably be a good deal of work of this kind to be done, ...

This process of constructing instruction tables should be very
fascinating. There need be no real danger of it ever becoming a
drudge, for any processes that are quite mechanical may be turned over
to the machine itself.

[Proposed Electronic Calculator, 1945]

Ian Stark APL1 2009-01-12

Programmability

One of the most significant feature of computers is the fact that they are
programmable. Day-to-day, this is astoundingly underused.

Programmability means that computers can always do more. Best of all,
you can program new ways to program.

Turing writing about the Automatic Computing Engine ACE:

Instruction tables will have to be made up by mathematicians with
computing experience and perhaps a certain puzzle-solving ability.
There will probably be a good deal of work of this kind to be done, ...
This process of constructing instruction tables should be very
fascinating. There need be no real danger of it ever becoming a
drudge, for any processes that are quite mechanical may be turned over
to the machine itself.

[Proposed Electronic Calculator, 1945]

Ian Stark APL1 2009-01-12

Abstraction

The concept of abstraction is an important route to the programmability
of languages themselves.

Abstractions build upon each other: bytes, arrays, pointers, trees, files,
sockets, objects, databases, procedures, functions, threads, behaviours, . . .

Abstraction frees up you to think about other things, and you should. Let
the machine get on with its job.

Knuth: Premature optimization is the root of all evil
[Structured Programming with go to Statements, 1974]

Ian Stark APL1 2009-01-12

Abstraction

The concept of abstraction is an important route to the programmability
of languages themselves.

Abstractions build upon each other: bytes, arrays, pointers, trees, files,
sockets, objects, databases, procedures, functions, threads, behaviours, . . .

Abstraction frees up you to think about other things, and you should. Let
the machine get on with its job.

Knuth: Premature optimization is the root of all evil
[Structured Programming with go to Statements, 1974]

Ian Stark APL1 2009-01-12

Time plan

Week 1 Monday 12 January Thursday 15 January
Week 2 Monday 19 January Thursday 22 January
Week 3 Monday 26 January Thursday 29 January
Week 4 Monday 2 February Thursday 5 February
Week 5 Monday 9 February Thursday 12 February
Week 6 Monday 16 February Thursday 14 February
Week 7 Monday 23 February Thursday 21 February
Week 8 Monday 2 March Thursday 5 March
Week 9 Monday 9 March Thursday 12 March
Week 10 Monday 16 March Thursday 19 March
Week 11 Monday 23 March Thursday 26 March

This gives 22 slots.

including guest lectures, assignment & review tutorials.

Coursework is to research a novel language feature, from a list provided;
making a written report on this, with your own working code examples.

The topic list will be presented at the start of Week 3; choice of topic
must be made by the end of Week 4; report due by the end of Week 10.

Ian Stark APL1 2009-01-12

Time plan

Week 1 Monday 12 January Thursday 15 January
Week 2 Monday 19 January Thursday 22 January
Week 3 Monday 26 January Thursday 29 January
Week 4 Monday 2 February Thursday 5 February
Week 5 Monday 9 February Thursday 12 February
Week 6 Monday 16 February Thursday 14 February
Week 7 Monday 23 February Thursday 21 February
Week 8 Monday 2 March Thursday 5 March
Week 9 Monday 9 March Thursday 12 March
Week 10 Monday 16 March Thursday 19 March

This gives 20 slots.

including guest lectures, assignment & review tutorials.

Coursework is to research a novel language feature, from a list provided;
making a written report on this, with your own working code examples.

The topic list will be presented at the start of Week 3; choice of topic
must be made by the end of Week 4; report due by the end of Week 10.

Ian Stark APL1 2009-01-12

Time plan

Week 1 Monday 12 January Thursday 15 January
Week 2 Monday 19 January Thursday 22 January
Week 3 Monday 26 January Thursday 29 January
Week 4 Monday 2 February Thursday 5 February
Week 5 Monday 9 February Thursday 12 February
Week 6 Monday 16 February Thursday 14 February
Week 7 Monday 23 February Thursday 21 February
Week 8 Monday 2 March Thursday 5 March
Week 9 Monday 9 March Thursday 12 March
Week 10 Monday 16 March Thursday 19 March

This gives 20 slots, including guest lectures, assignment & review tutorials.

Coursework is to research a novel language feature, from a list provided;
making a written report on this, with your own working code examples.

The topic list will be presented at the start of Week 3; choice of topic
must be made by the end of Week 4; report due by the end of Week 10.

Ian Stark APL1 2009-01-12

Time plan

Week 1 Monday 12 January Thursday 15 January
Week 2 Monday 19 January Thursday 22 January
Week 3 Monday 26 January Thursday 29 January
Week 4 Monday 2 February Thursday 5 February
Week 5 Monday 9 February Thursday 12 February
Week 6 Monday 16 February Thursday 14 February
Week 7 Monday 23 February Thursday 21 February
Week 8 Monday 2 March Thursday 5 March
Week 9 Monday 9 March Thursday 12 March
Week 10 Monday 16 March Thursday 19 March

This gives 20 slots, including guest lectures, assignment & review tutorials.

Coursework is to research a novel language feature, from a list provided;
making a written report on this, with your own working code examples.

The topic list will be presented at the start of Week 3; choice of topic
must be made by the end of Week 4; report due by the end of Week 10.

Ian Stark APL1 2009-01-12

Time plan

Week 1 Monday 12 January Thursday 15 January
Week 2 Monday 19 January Thursday 22 January
Week 3 Monday 26 January Thursday 29 January
Week 4 Monday 2 February Thursday 5 February
Week 5 Monday 9 February Thursday 12 February
Week 6 Monday 16 February Thursday 14 February
Week 7 Monday 23 February Thursday 21 February
Week 8 Monday 2 March Thursday 5 March
Week 9 Monday 9 March Thursday 12 March
Week 10 Monday 16 March Thursday 19 March

This gives 20 slots, including guest lectures, assignment & review tutorials.

Coursework is to research a novel language feature, from a list provided;
making a written report on this, with your own working code examples.

The topic list will be presented at the start of Week 3;

choice of topic
must be made by the end of Week 4; report due by the end of Week 10.

Ian Stark APL1 2009-01-12

Time plan

Week 1 Monday 12 January Thursday 15 January
Week 2 Monday 19 January Thursday 22 January
Week 3 Monday 26 January Thursday 29 January
Week 4 Monday 2 February Thursday 5 February
Week 5 Monday 9 February Thursday 12 February
Week 6 Monday 16 February Thursday 14 February
Week 7 Monday 23 February Thursday 21 February
Week 8 Monday 2 March Thursday 5 March
Week 9 Monday 9 March Thursday 12 March
Week 10 Monday 16 March Thursday 19 March

This gives 20 slots, including guest lectures, assignment & review tutorials.

Coursework is to research a novel language feature, from a list provided;
making a written report on this, with your own working code examples.

The topic list will be presented at the start of Week 3; choice of topic
must be made by the end of Week 4;

report due by the end of Week 10.

Ian Stark APL1 2009-01-12

Time plan

Week 1 Monday 12 January Thursday 15 January
Week 2 Monday 19 January Thursday 22 January
Week 3 Monday 26 January Thursday 29 January
Week 4 Monday 2 February Thursday 5 February
Week 5 Monday 9 February Thursday 12 February
Week 6 Monday 16 February Thursday 14 February
Week 7 Monday 23 February Thursday 21 February
Week 8 Monday 2 March Thursday 5 March
Week 9 Monday 9 March Thursday 12 March
Week 10 Monday 16 March Thursday 19 March

This gives 20 slots, including guest lectures, assignment & review tutorials.

Coursework is to research a novel language feature, from a list provided;
making a written report on this, with your own working code examples.

The topic list will be presented at the start of Week 3; choice of topic
must be made by the end of Week 4; report due by the end of Week 10.

Ian Stark APL1 2009-01-12

Communication

Web http://www.inf.ed.ac.uk/teaching/courses/apl/

The course web page carries lecture slides, a lecture log and links to
resources mentioned, as well as occasional news and advice.

Lecturers
The most effective way to contact either lecturer is by personal email,
from your University email address. However, many questions are even
better posed on the course newsgroup.

Newsgroup news://newsread.ed.ac.uk/eduni.inf.course.apl

You should read the course newsgroup regularly. It carries timely
announcements about lectures, homework, and coursework. You can ask
questions about the course, and respond to the questions of others.

See the course web page for information on how to access newsgroups.

Ian Stark APL1 2009-01-12

http://www.inf.ed.ac.uk/teaching/courses/apl/
news://newsread.ed.ac.uk/eduni.inf.course.apl

What’s out there?

Some example “advances in programming languages” for this course:

Extensible records for typing objects in OCaml
Specifying and statically checking behaviour of Java code
LINQ and cross-language integration in .NET
Patterns and abstractions for programming concurrent code
Mobile code that carries its own proof of safety

In addition, the coursework will involve you finding out about a further
topic, chosen from a similar list.

Ian Stark APL1 2009-01-12

Crystal ball gazing

Some areas to watch, and possible drivers of future language design:

Multicore
Relaxed memory models
Quantum computing
General-purpose computing on GPUs, FPGAs
{Cloud,distributed,mobile,web} computing
Scripting
Language-based security
Multilanguage interoperability

Don’t take this too seriously: some of these have been on the “soon to be
hot” list for decades. Current long shot: synthetic biology and
programming languages for life.

Ian Stark APL1 2009-01-12

The Secret Agenda of the Functional Illuminati
All advances in the design of mainstream programming languages shall

arise by transfer from existing functional languages.
Everything necessary can be found by contemplation of ML or Haskell.

The exceptionally adept may already discern all these in LISP.

X Automatic memory management (everywhere these days)
X Exceptions (ditto)
X Parametric polymorphism (see Java/C# generics)
X Implicit pointers (any OO language)
X First-class functions (C# delegates)
X Immutable values (see Java string)
X Closures (lambdas in C#, Visual Basic 9 (!), maybe Java 7?)
? Algebraic datatypes (still trying, but see Scala)
? . . .

Homework

The next lecture is on Thursday, and concerns type systems and the
language Objective Caml (OCaml). Before then, you should:

Read the Chapter 1 of the Objective Caml manual, The Core
Language, Sections 1.1–1.5.
Read A Hundred Lines of Caml.
Execute some of those lines on a convenient ocaml implementation.

Also, Wikipedia’s History of programming languages article is an easy read
and fairly informative.

Ian Stark APL1 2009-01-12

http://caml.inria.fr/pub/docs/manual-ocaml/manual003.html
http://caml.inria.fr/pub/docs/manual-ocaml/manual003.html
http://caml.inria.fr/about/taste.en.html
http://en.wikipedia.org/wiki/History_of_programming_languages

	Opening
	Languages
	Programmability
	Administration
	Coming up

