
Advances in Programming Languages
APL3: Row variables in OCaml

Ian Stark

School of Informatics
The University of Edinburgh

Thursday 17 January 2008
Semester 2 Week 2

http://www.inf.ed.ac.uk/~stark

Outline

1 OCaml overview: types, expressions

2 OCaml example: region quadtrees

3 Row variables: structural typing for objects

Ian Stark APL3 2008-01-17

Outline

1 OCaml overview: types, expressions

2 OCaml example: region quadtrees

3 Row variables: structural typing for objects

Ian Stark APL3 2008-01-17

Objective Caml

Objective Caml (OCaml) is:

A strongly-typed functional language, a version of ML; with

high-performance native-code compilers for many processors;

as well as a portable bytecode compiler;

and an interactive execution environment.

Features include:

First-class higher-order functions;

Objects, classes, multiple inheritance;

Parametric polymorphism, exceptions;

Records, variants, and general algebraic datatypes.

Ian Stark APL3 2008-01-17

Simple statements

let x = 3 in x+x;;
− : int = 6

let square x = x∗x;;
val square : int −> int = <fun>

let rec factorial n = if n < 1 then 1 else n∗(factorial(n−1));;
val factorial : int −> int = <fun>

factorial (square 3);;
− : int = 362880

Ian Stark APL3 2008-01-17

Type constructions

(”Thursday”, 9, 10) : string ∗ int ∗ int

[2. ; 2.5 ; 3.] : float list

[| ’a’; ’b’ |] : char array

fun x y −> (x+y)/2 : int −> int −> int

type day = { month:string; date:int }
{ month = ”Jan”; date = 17 } : day

type shape = Circle of int | Rectangle of int∗int

type ’a tree = Node of ’a ∗ ’a tree ∗ ’a tree | Leaf

Ian Stark APL3 2008-01-17

Outline

1 OCaml overview: types, expressions

2 OCaml example: region quadtrees

3 Row variables: structural typing for objects

Ian Stark APL3 2008-01-17

Example: Quadtrees (1/3)

A region quadtree represents
two-dimensional spatial data, such as
images, with variable resolution. Where
information density is nonuniform it is more
efficient than a simple two-dimensional array.

type quadtree = Clear
| Black | White | Red | Green | Blue
| Tree of quadtree ∗ quadtree ∗ quadtree ∗ quadtree

type picture = { title : string; image: quadtree }

Ian Stark APL3 2008-01-17

Example: Quadtrees (2/3)

let rec isclear : quadtree −> bool
= fun qt −>

match qt with
Clear −> true

| Tree (a,b,c,d) −> isclear a && isclear b
&& isclear c && isclear d

| −> false

(∗ nonblank : picture −> bool ∗)
let nonblank pic = not (isclear pic.image)

Ian Stark APL3 2008-01-17

Example: Quadtrees (3/3)

let rec chop : int −> quadtree −> quadtree
= fun n qt −>

if n <= 0 then Clear
else

match qt with
Tree (a,b,c,d) −> Tree (chop (n−1) a, chop (n−1) b,

chop (n−1) c, chop (n−1) d)
| colour −> colour

(∗ thumbnail : picture −> picture ∗)
let thumbnail { title = t; image = i } = { title = t; image = chop 8 i }

(∗ summary : picture list −> picture list ∗)
let summary pics = List.map thumbnail (List.filter nonblank pics)

Ian Stark APL3 2008-01-17

Outline

1 OCaml overview: types, expressions

2 OCaml example: region quadtrees

3 Row variables: structural typing for objects

Ian Stark APL3 2008-01-17

Subtyping arrays in Java

Java has subtyping: a value of one type may be used at any more general
type. So String < Object, and every String is an Object.

Not all is well with Java types

String[] a = { ”Hello” }; // A small string array
Object[] b = a; // Now a and b are the same array
b[0] = Boolean.FALSE; // Drop in a Boolean object
String s = a[0]; // Oh, dear
System.out.println(s); // This isn’t going to be pretty

This compiles without error or warning: in Java, if S < T then S[] < T[].

Except that it isn’t. So every array assignment gets a runtime check.

Ian Stark APL3 2008-01-17

Typing in OO languages

Ideally, an statically-checked object-oriented language should have a type
system that is

(a) usable, and

(b) correct.

Building such type systems is a continuing challenge.

One problem is that subtyping is crucial to OO programming, but
unfortunately:

subtyping is not inheritance; (really, it’s not)

it’s also extremely hard to get right.

Ian Stark APL3 2008-01-17

Typing in OO languages

Ideally, an statically-checked object-oriented language should have a type
system that is

(a) usable, and

(b) correct.

Building such type systems is a continuing challenge.

One problem is that subtyping is crucial to OO programming, but
unfortunately:

subtyping is not inheritance; (really, it’s not)

it’s also extremely hard to get right.

Ian Stark APL3 2008-01-17

Typing in OO languages

Ideally, an statically-checked object-oriented language should have a type
system that is

(a) usable, and

(b) correct.

Building such type systems is a continuing challenge.

One problem is that subtyping is crucial to OO programming, but
unfortunately:

subtyping is not inheritance; (really, it’s not)

it’s also extremely hard to get right.

Ian Stark APL3 2008-01-17

How hard?

Fixing object subtyping has been a busy research topic for several years.

You can see this by observing that the type declared for the max method
in the Java collections class has gone from: (Java 1.2, 1998)

public static Object max(Collection coll)

which always returns an Object, whatever is stored in the collection, to:

public static <T extends Object & Comparable<? super T>> T
max(Collection<? extends T> coll)

and it might still throw a ClassCastException. (Java 6, 2006)

This is not a criticism: the new typing is more flexible, it saves on explicit
downcasts, and the Java folks do know what they are doing.

Ian Stark APL3 2008-01-17

How hard?

Fixing object subtyping has been a busy research topic for several years.

You can see this by observing that the type declared for the max method
in the Java collections class has gone from: (Java 1.2, 1998)

public static Object max(Collection coll)

which always returns an Object, whatever is stored in the collection, to:

public static <T extends Object & Comparable<? super T>> T
max(Collection<? extends T> coll)

and it might still throw a ClassCastException. (Java 6, 2006)

This is not a criticism: the new typing is more flexible, it saves on explicit
downcasts, and the Java folks do know what they are doing.

Ian Stark APL3 2008-01-17

How hard?

Fixing object subtyping has been a busy research topic for several years.

You can see this by observing that the type declared for the max method
in the Java collections class has gone from: (Java 1.2, 1998)

public static Object max(Collection coll)

which always returns an Object, whatever is stored in the collection, to:

public static <T extends Object & Comparable<? super T>> T
max(Collection<? extends T> coll)

and it might still throw a ClassCastException. (Java 6, 2006)

This is not a criticism: the new typing is more flexible, it saves on explicit
downcasts, and the Java folks do know what they are doing.

Ian Stark APL3 2008-01-17

How hard?

Fixing object subtyping has been a busy research topic for several years.

You can see this by observing that the type declared for the max method
in the Java collections class has gone from: (Java 1.2, 1998)

public static Object max(Collection coll)

which always returns an Object, whatever is stored in the collection, to:

public static <T extends Object & Comparable<? super T>> T
max(Collection<? extends T> coll)

and it might still throw a ClassCastException. (Java 6, 2006)

This is not a criticism: the new typing is more flexible, it saves on explicit
downcasts, and the Java folks do know what they are doing.

Ian Stark APL3 2008-01-17

How hard?

Fixing object subtyping has been a busy research topic for several years.

You can see this by observing that the type declared for the max method
in the Java collections class has gone from: (Java 1.2, 1998)

public static Object max(Collection coll)

which always returns an Object, whatever is stored in the collection, to:

public static <T extends Object & Comparable<? super T>> T
max(Collection<? extends T> coll)

and it might still throw a ClassCastException. (Java 6, 2006)

This is not a criticism: the new typing is more flexible, it saves on explicit
downcasts, and the Java folks do know what they are doing.

Ian Stark APL3 2008-01-17

Nominal vs. structural

Java uses predominantly nominative or nominal typing: the only relations
between types are those stated explicitly by the programmer.

class pair1 { int x; int y; } // Pair of integers
class pair2 { int x; int y; } // Also a pair of integers

pair1 a = new pair1(); // Create one new pair object
pair2 b = a; // Assign it to another

// Get an ”incompatible types” error

This is by design:

it can help with safe programming; and

it certainly helps the compiler with typechecking.

Ian Stark APL3 2008-01-17

Nominal vs. structural

In contrast, OCaml uses structural typing: the properties of types can be
deduced from their structure.

type pair1 = int ∗ int (∗ Type abbreviation ∗)
type pair2 = int ∗ int (∗ An identical one ∗)

let a : pair1 = (5,6) (∗ Create a new pair ∗)
let b : pair2 = a (∗ Copy it to another ∗)

(∗ No error ∗)

If object typing is tough to sort out nominally, then how do we attempt to
do it structurally?

Ian Stark APL3 2008-01-17

Records and record types

OCaml provides strongly-typed records:

type picture = { title : string; image : quadtree }
let p = { title = ”Look at me”; image = i }

p.title ;;
− : string = ”Look at me”

This could be the basis for an object system; records can even have
mutable fields to serve as instance variables.

However, field names are strictly tied to their record:

fun x −> x.title;;
− : picture −> string = <fun>

Objects need more flexibility. Subtyping is one possibility, but there is
another mechanism already available...

Ian Stark APL3 2008-01-17

Parametric polymorphism

A simple type system:

τ ::= α | τ × τ | τ → τ

σ ::= ∀~α.τ

Here τ is a type, α is a type variable and σ is a type scheme.

Type schemes characterise functions that carry out the same action at a
range of types, for example:

λx.x : ∀α.α → α

This is parametric polymorphism, implemented in Java/C# as generics.

OCaml automatically infers polymorphic types where possible:

let id x = x;;
val id : ’a −> ’a = <fun>

Ian Stark APL3 2008-01-17

Row variables

Add types for records, where m1 . . .mk are labels and ρ is a row variable:

τ ::= α | τ × τ | τ → τ | 〈m1 : τ1, . . . ,mk : τk | ρ〉
σ ::= ∀~α~ρ.τ

We can now type functions that carry out the same action at a range of
different record types. For example, using # for field selection:

λx.(x#m) : ∀α∀ρ.〈m:α|ρ〉 → α

This is row polymorphism.

OCaml automatically infers polymorphic row types where possible:

let getfield p = p#m
val getfield : < m : ’a; .. > −> ’a = <fun>

let double p = p#height ∗ 2;;
val double : < height : int; .. > −> int = <fun>

Ian Stark APL3 2008-01-17

Objects in Ocaml (1/3)

OCaml uses row types to represent an object as a record of methods.

let a = (∗ Saving account ∗)
object

val mutable balance = 0
method credit n = balance <− balance + n
method enquire = balance

end;;
val a : < credit : int −> unit; enquire : int > = <obj>

Automatic type inference gives the most general type for an object.

(OCaml does also have classes for objects that share method suites.)

Ian Stark APL3 2008-01-17

Objects in Ocaml (2/3)

Different object types can share methods with the same name.

let b = (∗ Spending account ∗)
object

val mutable balance = 0
method credit n = balance <− balance + n
method debit n = balance <− balance − n
method enquire = balance

end;;
val b : < credit : int −> unit; debit : int −> unit; enquire : int >

= <obj>

Account b has all the methods of a, and more.

(We could also use inheritance to generate one class from another.)

Ian Stark APL3 2008-01-17

Objects in Ocaml (3/3)

Define a function to add credit to an account.

let boost x = x#credit 20;;
val boost : < credit : int −> ’a; .. > −> ’a = <fun>

OCaml infers a very general type, so we can apply this to both existing
accounts:

boost a; a#enquire;;
− : int = 20

boost b; b#debit 5; b#enquire;;
− : int = 15

It is even possible to infer a type for the function that takes a list of any
type of accounts and selects the one of greatest value:

max : (< enquire : int; .. > as a’) list −> ’a

Ian Stark APL3 2008-01-17

Exercises

What is an octree, and why would you use one in Microsoft’s XNA
game development toolkit?

Copy and paste the quadtree code and run it in OCaml.

Do the same for the bank account objects, and test them.

Write a function to compute the nonblank area of a quadtree.

Write a function to display a quadtree using the OCaml graphics
library.

Ian Stark APL3 2008-01-17

http://caml.inria.fr/pub/docs/manual-ocaml/manual039.html
http://caml.inria.fr/pub/docs/manual-ocaml/manual039.html

Summary

OCaml is a functional programming language with a rich static type
system.

We saw some example OCaml code for manipulating quadtrees, a
structure for variable-resolution 2-dimensional spatial data.

Static typing for object-oriented programming is tricky.

Row variables allow structural typing of objects.

Ian Stark APL3 2008-01-17

Summary

OCaml is a functional programming language with a rich static type
system.

We saw some example OCaml code for manipulating quadtrees, a
structure for variable-resolution 2-dimensional spatial data.

Static typing for object-oriented programming is tricky.

Row variables allow structural typing of objects.

Ian Stark APL3 2008-01-17

	OCaml overview: types, expressions
	OCaml example: region quadtrees
	Row variables: structural typing for objects

