
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Advances in Programming Languages
APL2: Some types and a little OCaml

Ian Stark

School of Informatics
The University of Edinburgh

Monday 14 January 2008
Semester 2 Week 2

http://www.inf.ed.ac.uk/~stark

Plan

Types and type systems

Course timing plan

A small amount of OCaml

Ian Stark APL2 2008-01-14

Some types

A selection of types from some languages.

C/C++

int, long, float, unsigned int, char
int [], char∗, char&, int(∗)(float,char)

OCaml

int , int64, bool, char, string, unit
string∗string, int list , bool array
int−>int, int−>string−>char, ’a list −> ’a list

Java

Object, byte[], boolean
StringBuffer, LinkedList, TreeSet, ArrayList<String>
IllegalPathStateException, BeanContextServiceRevokedListener

Ian Stark APL2 2008-01-14

What do people do with types?

Type checking

Static type checking

Dynamic type checking

Type annotation

Type inference

Subtyping

Structural typing

Nominative typing

Duck typing

Effect types

Ian Stark APL2 2008-01-14

What is a type system?

A type system is a syntactically defined subset T of programs such that:

P ∈ T =⇒ Compile(P) |= φ

(read: “if P is in T then Compile(P) satisfies φ”)

where Compile(P) is the object code corresponding to P and φ is some
desired property of its execution.

For example,

T = “well-typed Java programs”

φ = “methods are always correctly invoked”

Slogan: Well-typed programs cannot go wrong. [Robin Milner, 1978]

Ian Stark APL2 2008-01-14

Java

Java is serious about abstraction

Java works almost entirely through class-based object-oriented
programming; it encourages the use of abstract classes through inheritance
and interfaces; and it does not expose the private workings of classes and
packages.

Java is serious about typing

Java has strong static typing: all programs are checked for
type-correctness at compile-time. Bytecode is checked again when classes
are loaded, by the bytecode verifier, before execution. The recent
introduction of generics extends the power of the type system.

Even so, things do not always go as well as one might hope...

Ian Stark APL2 2008-01-14

Subtyping arrays in Java

Java has subtyping: a value of one type may be used at any more general
type. So String < Object, and every String is an Object.

Not all is well with Java types

String[] a = { ”Hello” }; // A small string array
Object[] b = a; // Now a and b are the same array
b[0] = Boolean.FALSE; // Drop in a Boolean object
String s = a[0]; // Oh, dear
System.out.println(s); // This isn’t going to be pretty

This compiles without error or warning: in Java, if S < T then S[] < T[].

Except that it isn’t. So every array assignment gets a runtime check.

Ian Stark APL2 2008-01-14

Time plan

Week 1 Monday 7 January Thursday 10 January
Week 2 Monday 14 January Thursday 17 January
Week 3 Monday 21 January Thursday 24 January
Week 4 Monday 28 January Thursday 31 January
Week 5 Monday 4 February Thursday 7 February
Week 6 Monday 11 February Thursday 14 February
Week 7 Monday 18 February Thursday 21 February
Week 8 Monday 25 February Thursday 28 February
Week 9 Monday 3 March Thursday 6 March
Week 10 Monday 10 March Thursday 13 March
Week 11 Monday 17 March Thursday 20 March

This gives 22 slots

= 5 topics× 3 regular lectures + 4 interstitial lectures

.

Coursework is to research a novel language feature, from a list provided;
making a written report on this, with your own working code examples.

The topic list will be presented at the start of Week 3; choice of topic
must be made by the end of Week 4; report due by the end of Week 9.

Ian Stark APL2 2008-01-14

Time plan

Week 1 Monday 7 January Thursday 10 January
Week 2 Monday 14 January Thursday 17 January
Week 3 Monday 21 January Thursday 24 January
Week 4 Monday 28 January Thursday 31 January
Week 5 Monday 4 February Thursday 7 February
Week 6 Monday 11 February Thursday 14 February
Week 7 Monday 18 February Thursday 21 February
Week 8 Monday 25 February Thursday 28 February
Week 9 Monday 3 March Thursday 6 March
Week 10 Monday 10 March Thursday 13 March
Week 11 Monday 17 March Thursday 20 March

This gives 21 slots

= 5 topics× 3 regular lectures + 4 interstitial lectures

.

Coursework is to research a novel language feature, from a list provided;
making a written report on this, with your own working code examples.

The topic list will be presented at the start of Week 3; choice of topic
must be made by the end of Week 4; report due by the end of Week 9.

Ian Stark APL2 2008-01-14

Time plan

Week 1 Monday 7 January Thursday 10 January
Week 2 Monday 14 January Thursday 17 January
Week 3 Monday 21 January Thursday 24 January
Week 4 Monday 28 January Thursday 31 January
Week 5 Monday 4 February Thursday 7 February
Week 6 Monday 11 February Thursday 14 February
Week 7 Monday 18 February Thursday 21 February
Week 8 Monday 25 February Thursday 28 February
Week 9 Monday 3 March Thursday 6 March
Week 10 Monday 10 March Thursday 13 March
Week 11 Monday 17 March Thursday 20 March

This gives 19 slots

= 5 topics× 3 regular lectures + 4 interstitial lectures

.

Coursework is to research a novel language feature, from a list provided;
making a written report on this, with your own working code examples.

The topic list will be presented at the start of Week 3; choice of topic
must be made by the end of Week 4; report due by the end of Week 9.

Ian Stark APL2 2008-01-14

Time plan

Week 1 Monday 7 January Thursday 10 January
Week 2 Monday 14 January Thursday 17 January
Week 3 Monday 21 January Thursday 24 January
Week 4 Monday 28 January Thursday 31 January
Week 5 Monday 4 February Thursday 7 February
Week 6 Monday 11 February Thursday 14 February
Week 7 Monday 18 February Thursday 21 February
Week 8 Monday 25 February Thursday 28 February
Week 9 Monday 3 March Thursday 6 March
Week 10 Monday 10 March Thursday 13 March
Week 11 Monday 17 March Thursday 20 March

This gives 19 slots = 5 topics× 3 regular lectures + 4 interstitial lectures.

Coursework is to research a novel language feature, from a list provided;
making a written report on this, with your own working code examples.

The topic list will be presented at the start of Week 3; choice of topic
must be made by the end of Week 4; report due by the end of Week 9.

Ian Stark APL2 2008-01-14

Time plan

Week 1 Monday 7 January Thursday 10 January
Week 2 Monday 14 January Thursday 17 January
Week 3 Monday 21 January Thursday 24 January
Week 4 Monday 28 January Thursday 31 January
Week 5 Monday 4 February Thursday 7 February
Week 6 Monday 11 February Thursday 14 February
Week 7 Monday 18 February Thursday 21 February
Week 8 Monday 25 February Thursday 28 February
Week 9 Monday 3 March Thursday 6 March
Week 10 Monday 10 March Thursday 13 March
Week 11 Monday 17 March Thursday 20 March

This gives 19 slots = 5 topics× 3 regular lectures + 4 interstitial lectures.

Coursework is to research a novel language feature, from a list provided;
making a written report on this, with your own working code examples.

The topic list will be presented at the start of Week 3; choice of topic
must be made by the end of Week 4; report due by the end of Week 9.

Ian Stark APL2 2008-01-14

Time plan

Week 1 Monday 7 January Thursday 10 January
Week 2 Monday 14 January Thursday 17 January
Week 3 Monday 21 January Thursday 24 January
Week 4 Monday 28 January Thursday 31 January
Week 5 Monday 4 February Thursday 7 February
Week 6 Monday 11 February Thursday 14 February
Week 7 Monday 18 February Thursday 21 February
Week 8 Monday 25 February Thursday 28 February
Week 9 Monday 3 March Thursday 6 March
Week 10 Monday 10 March Thursday 13 March
Week 11 Monday 17 March Thursday 20 March

This gives 19 slots = 5 topics× 3 regular lectures + 4 interstitial lectures.

Coursework is to research a novel language feature, from a list provided;
making a written report on this, with your own working code examples.

The topic list will be presented at the start of Week 3;

choice of topic
must be made by the end of Week 4; report due by the end of Week 9.

Ian Stark APL2 2008-01-14

Time plan

Week 1 Monday 7 January Thursday 10 January
Week 2 Monday 14 January Thursday 17 January
Week 3 Monday 21 January Thursday 24 January
Week 4 Monday 28 January Thursday 31 January
Week 5 Monday 4 February Thursday 7 February
Week 6 Monday 11 February Thursday 14 February
Week 7 Monday 18 February Thursday 21 February
Week 8 Monday 25 February Thursday 28 February
Week 9 Monday 3 March Thursday 6 March
Week 10 Monday 10 March Thursday 13 March
Week 11 Monday 17 March Thursday 20 March

This gives 19 slots = 5 topics× 3 regular lectures + 4 interstitial lectures.

Coursework is to research a novel language feature, from a list provided;
making a written report on this, with your own working code examples.

The topic list will be presented at the start of Week 3; choice of topic
must be made by the end of Week 4;

report due by the end of Week 9.

Ian Stark APL2 2008-01-14

Time plan

Week 1 Monday 7 January Thursday 10 January
Week 2 Monday 14 January Thursday 17 January
Week 3 Monday 21 January Thursday 24 January
Week 4 Monday 28 January Thursday 31 January
Week 5 Monday 4 February Thursday 7 February
Week 6 Monday 11 February Thursday 14 February
Week 7 Monday 18 February Thursday 21 February
Week 8 Monday 25 February Thursday 28 February
Week 9 Monday 3 March Thursday 6 March
Week 10 Monday 10 March Thursday 13 March
Week 11 Monday 17 March Thursday 20 March

This gives 19 slots = 5 topics× 3 regular lectures + 4 interstitial lectures.

Coursework is to research a novel language feature, from a list provided;
making a written report on this, with your own working code examples.

The topic list will be presented at the start of Week 3; choice of topic
must be made by the end of Week 4; report due by the end of Week 9.

Ian Stark APL2 2008-01-14

Objective Caml

Objective Caml (OCaml) is:

A strongly-typed functional language, a version of ML; with

high-performance native-code compilers for many processors;

as well as a portable bytecode compiler;

and an interactive execution environment.

Features include:

First-class higher-order functions;

Objects, classes, multiple inheritance;

Parametric polymorphism, exceptions;

Records, variants, and general algebraic datatypes.

Ian Stark APL2 2008-01-14

Simple statements

let x = 3 in x+x;;
− : int = 6

let square x = x∗x;;
val square : int −> int = <fun>

let rec factorial n = if n < 1 then 1 else n∗(factorial(n−1));;
val factorial : int −> int = <fun>

factorial (square 3);;
− : int = 362880

Ian Stark APL2 2008-01-14

Type constructions

(”Monday”,9,10) : string ∗ int ∗ int

[2. ; 2.5 ; 3.] : float list

[| ’a’; ’b’ |] : char array

fun x y −> x+y/2 : int −> int −> int

type day = { month:string; date:int }
{ month = ”Jan”; date = 14 } : day

type shape = Circle of int | Rectangle of int∗int

type ’a tree = Node of ’a | Leaf

Ian Stark APL2 2008-01-14

Example: Quadtrees (1/3)

A region quadtree is a structure for
representing two-dimensional data, such as
images. Where the data is constant across
large areas it can be more space-efficient
than the comparable two-dimensional array.

type quadtree = Clear
| Black | White | Red | Green | Blue
| Tree of quadtree ∗ quadtree ∗ quadtree ∗ quadtree

type picture = { title : string; image: quadtree }

Ian Stark APL2 2008-01-14

Example: Quadtrees (2/3)

let rec isclear : quadtree −> bool
= fun qt −>

match qt with
Clear −> true

| Tree (a,b,c,d) −> isblank a && isblank b
&& isblank c && isblank d

| −> false

(∗ nonblank : picture −> bool ∗)
let nonblank pic = not (isclear pic.image)

Ian Stark APL2 2008-01-14

Example: Quadtrees (3/3)

let rec chop : int −> quadtree −> quadtree
= fun n qt −>

if n <= 0 then Clear
else

match qt with
Tree (a,b,c,d) −> Tree (chop (n−1) a, chop (n−1) b,

chop (n−1) c, chop (n−1) d)
| colour −> colour

(∗ simpler : picture −> picture ∗)
let simpler { title = t; image = i } = { title = t; image = chop 5 i }

(∗ summary : pictures list −> picture list ∗)
let summary pics = List.map simpler (List.filter nonblank pics)

Ian Stark APL2 2008-01-14

Homework

By the next lecture, on Thursday:

Test out the Java array subtyping example, and confirm that (a) it
compiles, and (b) there is a type error when run.

Read Gilad Bracha’s articles on his blog “Computational Theology”
about Java type annotations and the idea of pluggable types.

Read the Java fable Execution in the Kingdom of Nouns.

If you are uncertain about OCaml programming, try these online guides:

The Objective Caml Tutorial

Chapter 1 of OCaml for Scientists

Developing Applications with Objective Caml

For those who already know Standard ML, Andreas Rossberg has
written a handy conversion guide.

Ian Stark APL2 2008-01-14

http://blogs.sun.com/gbracha/entry/annotations_toward_pluggable_types
http://blogs.sun.com/gbracha/entry/a_few_ideas_on_type
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://www.ocaml-tutorial.org/
http://www.ffconsultancy.com/products/ocaml_for_scientists/chapter1.html
http://caml.inria.fr/pub/docs/oreilly-book/
http://www.mpi-sws.mpg.de/~rossberg/sml-vs-ocaml.html

Summary

Languages use types and type systems for several reasons.

A type system is a syntactically defined subset of programs which are
certain to have some desired property.

Objective Caml (OCaml) is a functional programming language with a
rich type system.

We saw some example OCaml code for manipulation quadtrees, a
2-dimensional data representation.

Ian Stark APL2 2008-01-14

	Opening
	Types
	Middle
	OCaml
	Closing

