
Advances in Programming Languages
APL18: Course Review

Ian Stark

School of Informatics
The University of Edinburgh

Monday 20 March 2008
Semester 2 Week 11

http://www.inf.ed.ac.uk/~stark


Course Review

The course has covered the following sample “advances in programming
languages”:

Type-safe extensible records in OCaml
JML and ESC/Java 2 for specifying and checking code
LINQ and cross-language integration in .NET
Concurrency in Java, Erlang, and Polyphonic C#
Cyclone for pointer management in C

Plus additional material on:
Spec# (Rustan Leino video)
Typing units of measure in F# (Andrew Kennedy, Microsoft Research)
Programming the Cell in Sieve C++ (Alasdair Donaldson, Codeplay)

as well as your own coursework topic.

Ian Stark APL18 2008-03-20



OCaml Records

Extensible Records in OCaml

OCaml is a strongly-typed functional language with excellent performance
across a range of platforms. It uses structural typing, where types are
compatible if they contain the same components; this is in contrast to the
nominative typing used by Java, C# and similar languages, where types
are compatible only if they have been explicitly declared so by name.

The object system of OCaml uses extensible records, where a longer record
can always be used in place of a shorter one:

let getfield p = p#m
val getfield : < m : ’a; .. > −> ’a = <fun>

let double p = p#height ∗ 2;;
val double : < height : int; .. > −> int = <fun>

This means that OCaml can separate method inheritance from subtyping.
Ian Stark APL18 2008-03-20



Reasoning and Specification

Hoare Logic
The logic of Hoare triples {P} C {Q} allows us to make statements and
reason about programs. This means we can specify desired behaviour, and
then verify that programs meet this specification.

JML
The Java Modeling Language uses annotation comments in Java source to
specify intended behaviour:

/∗@ requires credit > amount;
ensures credit == \old(credit) − amount; @∗/

public int withdraw(int amount) { ... }

ESC/Java 2
The Extended Static Checker for Java version 2 carries out a range of
checks on Java source, guided by JML annotations; some use an
automatic theorem prover. It can work within the Eclipse IDE.

Ian Stark APL18 2008-03-20



LINQ

Language-Integrated Query

The LINQ framework for Microsoft .NET maps the constructions of a
domain-specific language into a general-purpose programming language.
This maintains high-level abstractions and avoids the pitfalls of string
manipulation. We saw this in two settings:

In C#: writing SQL database queries
In F#: writing SQL, runtime code generation, and GPU acceleration

In order to do this, LINQ provides several language extensions, including:
lambda expressions, structural datatypes, anonymous types, and type
inference.

Ian Stark APL18 2008-03-20



Concurrency

Java and C#
Both languages provide shared-memory concurrency through explicit
threads, with mutual exclusion for critical sections using synchronized
(lock), and communication by wait/notify (wait/pulse).

Erlang
A declarative functional language with share-nothing concurrency, where all
communication is by sending messages to mailboxes. There are no critical
regions: this scales to high thread counts, and even “hot code upgrading”.

Polyphonic C#
Focuses on communication and asynchronous computation rather than
explicit concurrency. Importance of message patterns: a chord of methods
together trigger appropriate actions. Raising the level of abstraction gives
a compiler flexibility to optimise thread usage.

Ian Stark APL18 2008-03-20



Safer C

Cyclone

Programming in C still remains attractive for many reasons, in particular
the precise, transparent control over time and memory usage.
Unfortunately this is also the source of many errors and vulnerabilities.

The design of the C programming language encourages
programming at the edge of safety.

[Jim, Morrisett, et al.]

Cyclone is a dialect of C that has static and dynamic checking of pointer
manipulation: including pointers into arrays or structures, and pointer
arithmetic. Type annotations control these uses and how they are checked:
fat pointers, non-null, memory regions,. . . The aim is to eliminate all
unchecked memory errors.

Ian Stark APL18 2008-03-20



The Importance of Language

Sapir-Whorf Hypothesis
We dissect nature along lines laid down by our native language

Boole: Language is an instrument of human reason, not merely a medium
for the expression of thought [An Investigation of the Laws of Thought, 1854]

Wittgenstein: The limits of my language mean the limits of my world
[Tractatus Logico-Philosophicus, 1922]

Languages frame the way we think, and the programs we can imagine.

Extending programming languages can give us new ways of programming

Ian Stark APL18 2008-03-20



Significant Themes

Abstraction

Programmability means that computers can always do more. Best of all,
you can program new ways to program. The concept of abstraction is an
important way this appears in programming languages.

Abstractions build upon each other: bytes, arrays, pointers, lists, trees,
files, sockets, databases, objects, procedures, threads, behaviours, . . .

Abstraction frees up you to think about other things, and you should. Let
the machine get on with its job.

Types

Several of the language extensions and applications in this course have
made significant use of types for organisation and abstraction. Advanced
type systems can help capture programmer intentions, while enforcing the
constraints necessary to keep these meaningful and consistent.

Ian Stark APL18 2008-03-20



Feedback

Thank you for you participation. Please fill out the feedback forms about
the course. There are two of these:

Standard Informatics anonymous course feedback. Either fill out on
paper and leave here; hand in to the ITO; or fill out online.

Specific APL topic feedback: of the five topics covered, which ones
should come back next year? This uses range voting: choose any
number 0–31 for each, higher means better. Also, make your own
suggestions.

Programming languages continue to advance, and will continue to do so.
Notice this as it happens, and keep learning new languages.

Further advances that take place between now and May 15 will not be considered examinable

Ian Stark APL18 2008-03-20

http://homepages.inf.ed.ac.uk/cgi/ktd/course_questionnaire.pl

