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Programming-Language Techniques for Concurrency

This is the third of three lectures presenting some programming-language
techniques for managing concurrency.

Java, Erlang

Polyphonic C#

Cautionary Tales

There are, in fact, far too many cautionary tales in concurrency to cover in
just one lecture course. This single lecture touches on only three of them.
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Concurrency in Java and C#

Java

. . . has language facilities for spawning a new java.lang.Thread, with
synchronized code blocks using per-object locks to protect shared data,
and signalling between threads with wait and notify.

C#

. . . has language facilities for spawning a new System.Threading.Thread, to
lock code blocks using per-object locks to protect shared data, and
signalling between threads with Wait and Pulse methods.
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Reentrant Locks

One synchronized method in a class may call another, so that it already
has the lock it needs. Java requires reentrant locks.

Multiple locking

public class C {

public synchronized void actionA(int n) {
actionB(n); actionC(n);

}

private synchronized void actionB(int n) { ... }
private synchronized void actionC(int n) { ... }

}
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Reentrant Locks

When to release a reentrant lock cannot be determined statically; there
must be a runtime count of how many times it is acquired and released.

Recursive locking

public class C {

public synchronized void actionA(int n) {
if (n>0) { actionB(n); actionC(n); actionA(n−1); }

}

private synchronized void actionB(int n) { ... }
private synchronized void actionC(int n) { ... }

}
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Locks within Locks

Sometimes an action will need to acquire exclusive use of two separate
resources. This requires nested synchronized blocks.

Two locks

// Method to swap elements between two arrays
public void exchange(int[] p, int i, int[] q, int j) {

synchronized(p){ // Claim first array p[]
synchronized(q){ // Claim second array q[]

int v = p[i]; p[i ] = q[j]; q[j ] = v; // Exchange elements
}

}
}
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Locks within Locks

This thread-safe, but cannot ensure liveness. If two concurrent instances of
exchange try to obtain the same locks in the opposite order, they deadlock.

Two locks blocked

// Method to swap elements between two arrays
public void exchange(int[] p, int i, int[] q, int j) {

synchronized(p){ // Claim first array p[]
synchronized(q){ // Claim second array q[]

int v = p[i]; p[i ] = q[j]; q[j ] = v; // Exchange elements
}

}
}

exchange(a,1,b,4); | exchange(b,5,a,2);
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Networks of Locks

The problem arises in any situation where a routine needs exclusive access
to multiple resources before it can proceed. Several instances of the
routine can run concurrently without problem: but at any time two may
deadlock because each holds a lock needed by the other.

This is known as the Dining Philosophers’ Problem.

There are various solutions, including:

Find some global ordering on the all resources, and then acquire the
required resources according to that order.
Add a centralized guard lock that must be held before attempting to
reserve any resources.

These work, but they don’t come for free: at the least, they have to be
properly chosen and correctly implemented for the situation at hand.
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Non-Nesting Locks

If we want to modify a single node in a shared linked list, we might lock
the whole thing:

...
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Non-Nesting Locks

If we want to modify a single node in a shared linked list, we might lock
the whole thing:

...

find the node we want, change it,
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Non-Nesting Locks

If we want to modify a single node in a shared linked list, we might lock
the whole thing:

...

find the node we want, change it, and release the lock.
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Non-Nesting Locks

Instead of locking the entire list, we could lock the nodes individually as
we pass them:

...

Unfortunately, that still blocks the whole list from access by any other
thread.
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Non-Nesting Locks

Instead of locking the entire list, we could lock the nodes individually as
we pass them:

...

change the node, and unlock them on the way out.

Unfortunately, that still blocks the whole list from access by any other
thread.
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Non-Nesting Locks

Instead of locking the entire list, we could lock the nodes individually as
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Non-Nesting Locks

To let others use the list, while avoiding any interference, we can instead
lock nodes two at a time:

...

This is hand-over-hand or chain locking.
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Non-Nesting Locks

To let others use the list, while avoiding any interference, we can instead
lock nodes two at a time:
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Non-Nesting Locks

Hand-over-hand locking is a useful concurrency idiom:

3 It allows multiple threads to modify a list concurrently, without
overtaking or interfering.

3 It works for trees and more complex datastructures.

7 It requires locks whose acquire/release is not nested.
7 In particular, the built-in locks of Java/C# are not enough...
7 ... so we need to use the extended concurrency libraries.

As before, this works, but it doesn’t come for free: it has to be properly
specified and correctly implemented for the situation at hand.
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Thread Priorities

Where multiple threads are competing for time-slices, it becomes
important to control the behaviour of the scheduler that decides which
runs when.

One way to do this is to assign each thread a priority, and use that to
inform scheduler decisions. Typically, higher priority threads may pre-empt
lower priority threads, but not vice versa; and if both are waiting to run,
the higher priority thread will go first.

Java and C# both attach scheduler priorities to threads, as do almost all
concurrent systems. Exactly how the priority affects scheduling decisions
will differ from one system to another.
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Getting Priorities Wrong

Consider the following concurrent system:
A shared resource: say, a data bus with an access lock
A low priority thread: collect some boring data, briefly write to bus.
A medium priority thread: do an interesting thing for a while.
A high priority thread: manage the bus; intermittent but vital.

Consider the following timeline of activities:
Low thread seizes the lock, prepares to use the bus.
High thread pre-empts low, runs, cannot get lock, sleeps.
Medium thread runs, does not need lock, continues to run.

The low thread never gets a chance to run, so does not release the lock,
and the high thread is blocked indefinitely by lower-rated tasks.
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Priority Inversion

This situation is known as priority inversion, where a low-priority thread, or
combination of threads, manages to block a higher-priority activity.

There is a standard solution: priority inheritance, in which a thread
holding a lock is temporarily promoted to the priority level of any thread
waiting on that lock.

However, this adds complexity, has runtime cost, and makes understanding
scheduling yet more complex. Java does not include priority inheritance,
.NET might, and the .NET compact framework (embedded systems)
certainly does.

But honestly, that all sounds rather contrived and unlikely, doesn’t it? The
sort of thing that requires planets to align first — does it ever happen?
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Mars Pathfinder

Mars Pathfinder Lander preparations, February 1996
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Mars Pathfinder

Mars Pathfinder Lander viewed from the rover Sojourner, November 2003
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Mars Pathfinder

Pathfinder has a memory bus architecture joining the various system
components. Code running on the system included:

A low-priority weather observation process that occasionally posted
data to the bus.
Medium-priority long-running communications tasks that didn’t use
the bus.
A high-priority process to regularly check that all is well on the bus.

Safety feature: If the high-priority process was prevented from running for
a long time, then the system stopped all activities, reset, and shut down
for the rest of the day.

A “long time” means more than 1/8s.

On Mars, the mission was so successful that data levels rose far above
those anticipated. And the lander reset. And again the next day. . .
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Mars Pathfinder

The cause of the Pathfinder resets was indeed priority inversion,
complicated by the fact that different threads used different mechanisms
to access the bus: the weather observation didn’t directly take a lock, it
used a pipe that used a call to the file system that ...

NASA fixed it: they ran a duplicate on earth, recreated the reset, dumped
a trace and read it carefully. The fix was tricky: it patched the compiled
binaries on the probe to modify global flags controlling priority inheritance;
inevitably, this affected other code but was reckoned to be safe.

NASA are proud to "test what they fly and fly what they test" — all the
monitoring and control code remains on the actual probe. This includes
tracing and logging code, and even a command shell. Although the
lightspeed lag might make it tricky to use interactively.

See: What really happened on Mars?
http://research.microsoft.com/~mbj/Mars_Pathfinder/
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Memory Models

In a concurrent environment, with multiple threads executing over shared
memory, a memory model describes how reads and writes in one thread are
seen by others.

This is nontrivial in an architecture where memory is accessed by one or
more processors through layers of caches.

In a strong memory model, every thread sees reads and writes in exactly
the same order; everything is always flushed out to “real” memory before
anything else happens.

In a relaxed memory model, this may not hold. Different threads may see
things in a different order; they might even see different things.
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The Java Memory Model

Shared-memory concurrency is built in to Java, and the details of its
memory model are a part of the language definition.

Java has a relaxed memory model, whose details have undergone
significant changes over time.

James Gosling, Bill Joy, Guy Steele.
The Java Language Specification (First Edition), Chapter 17.
Addison-Wesley, 1996.

William Pugh (Specification Lead).
JSR 133: Java Memory Model and Thread Specification Revision,
September 2004.

David Aspinall, Jaroslav Ševčík.
Java Memory Model Examples: Good, Bad and Ugly. In VAMP 2007:
Proceedings of the First International Workshop on Verification and
Analysis of Multi-threaded Java-like Programs. September 2007.
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JMM Audience

The Java memory model (JMM) is addressed to at least three audiences:

Programmers: writing concurrent code, working out what
synchronization is required.

Compilers: working out appropriate optimized instruction sequences.

Processors/VMs: executing threads and memory operations; with
concurrent execution, instruction-level parallelism, caching,
speculative execution,. . .
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JMM content

The JMM is largely in the form of do’s and don’t’s, with accompanying
intuition and explanation.

Programmers: which idioms work, which don’t.

Compilers: what instruction manipulation is allowed, what isn’t.

Processors/VMs: what caching, speculation, parallelism is acceptable,
and what isn’t.

The JMM does not have a formal semantics, although it does have some
theorems. Some of the theorems have proofs. Some of the proofs are valid.

That sounds harsh, but in fact it’s remarkable to have even this level of
end-to-end certainty in a real-world concurrent language.
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JMM Examples

Two simple threads

int x=0, y=0

int r1 = x; | int r2 = y;
y = 2; | x = 1;

Here x and y are shared variables, initially both 0, while r1 and r2 are local
variables. Both command sequences run together.

Question: After they have finished, if r1==1, can r2==2 ?

Answer: Yes, absolutely. Just reorder these independent instructions.
Which might be done by the compiler, the processor, or the memory cache.

In Java this is legal behaviour whenever a data race is present.
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JMM Guarantees

What has been lost here is sequential consistency: the idea that whatever
really happens, the final outcome must be equivalent to some interleaving
of operations which agrees with the order they appear in the program
source.

The JMM guarantees sequential consistency in any program without data
races.

Separately, it recognizes that data races might be intentional, and provides
some sensible limits on behaviour in those cases.

Even so, the JMM is far from intuitive: it has no global time, and no
global store. There are just actions, some causally ordered, some visible
from particular threads.
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Speculation

Two simple threads

int x=0, y=0

r1 = x; | r2 = y;
if (r1==0) | x = r2;

{ y=42; } |
else |

{ y=r1; } |

Question: After the two threads have finished, can r1==r2==42 ?

Answer: Yes, absolutely.
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Speculation

Two simple threads

int x=0, y=0

r1 = x; | r2 = y;
if (r1==0) | x = r2;

{ y=42; } |
else |

{ y=r1; } |

Question: After the two threads have finished, can r1==r2==42 ?
Answer: Yes, absolutely. The left-hand thread may speculatively execute
the first branch, then retract that, but not before the other thread has
seen the value in y, assigned it to r2,. . .
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Speculation

Two simple threads

int x=0, y=0

r1 = x; | r2 = y;
if (r1==0) | x = r2;

{ y=42; } |
else |

{ y=r1; } |

Question: After the two threads have finished, can r1==r2==42 ?
Answer: Yes, absolutely.

This is explicitly legal under the JMM. However, the “out of thin air”
constraint does place some limits on what can happen.
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Summary

Locks: reentrant, may deadlock, hand-over-hand locking does not nest.

Programming concurrent locks is hard.

Priority inversion: low-priority threads may block high-priority ones.

Programming concurrent priorities is hard.

Relaxed memory model: races, sequential consistency, reordering,
speculation.

Programming concurrent architectures is hard.
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Next Lecture

Programming the Cell Processor with Sieve C++

Alastair Donaldson
Codeplay, Edinburgh

http://www.codeplay.com/
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