
Advances in Programming Languages
APL13: Concurrency

Ian Stark

School of Informatics
The University of Edinburgh

Thursday 28 February 2008
Semester 2 Week 8

http://www.inf.ed.ac.uk/~stark


Programming-Language Techniques for Concurrency

This is the first of three lectures presenting some programming-language
techniques for managing concurrency.

Java, Erlang

Polyphonic C#

Cautionary Tales

Ian Stark APL13 2008-02-28



Programming-Language Techniques for Concurrency

This is the first of three lectures presenting some programming-language
techniques for managing concurrency.

Java, Erlang

Polyphonic C#

Cautionary Tales

Ian Stark APL13 2008-02-28



Outline

1 Concurrency

2 Java

3 Erlang

Ian Stark APL13 2008-02-28



Outline

1 Concurrency

2 Java

3 Erlang

Ian Stark APL13 2008-02-28



Why Write Concurrent Programs?

Concurrent programming is about writing code that can handle doing
more than one thing at a time.

There are several reasons one might want
to do this, such as:

Efficient use of mixed resources (disk, memory, network)
Responsiveness (GUI, hardware interrupts, managing those mixed
resources)
Speed (multiprocessing, hyperthreading, multicore)
Multiple clients (database engine, web server)

Note that the aims here are different to parallel programming, which is
generally about the efficient (and speedy) processing of large sets of data.

Ian Stark APL13 2008-02-28



Why Write Concurrent Programs?

Concurrent programming is about writing code that can handle doing
more than one thing at a time. There are several reasons one might want
to do this, such as:

Efficient use of mixed resources (disk, memory, network)
Responsiveness (GUI, hardware interrupts, managing those mixed
resources)
Speed (multiprocessing, hyperthreading, multicore)
Multiple clients (database engine, web server)

Note that the aims here are different to parallel programming, which is
generally about the efficient (and speedy) processing of large sets of data.

Ian Stark APL13 2008-02-28



Why Write Concurrent Programs?

Concurrent programming is about writing code that can handle doing
more than one thing at a time. There are several reasons one might want
to do this, such as:

Efficient use of mixed resources (disk, memory, network)
Responsiveness (GUI, hardware interrupts, managing those mixed
resources)
Speed (multiprocessing, hyperthreading, multicore)
Multiple clients (database engine, web server)

Note that the aims here are different to parallel programming, which is
generally about the efficient (and speedy) processing of large sets of data.

Ian Stark APL13 2008-02-28



It’s Hard to Walk and Chew Gum

Concurrent programming offers much, including entirely new problems.

Interference — code that is fine on its own may fail if run concurrently.
Liveness — making sure that a program does anything at all.

Starvation — making sure that all parts of the program make progress.
Fairness — making sure that everyone makes reasonable progress.

Safety — making sure that the program always does the right thing.
Specification — just working out what is “the right thing” can be tricky.

Concurrent programming is hard, and although there is considerable
research, and even progress, on how to do it well, it is often wise to avoid
doing it yourself unless absolutely necessary.

Ian Stark APL13 2008-02-28



John Ousterhout: Why Threads Are A Bad Idea (for most purposes)
USENIX Technical Conference, invited talk, 1996

Ian Stark APL13 2008-02-28



Threads and Processes

The last slide notwithstanding, all operating systems and many
programming languages provide some form of concurrent programming,
usually through a notion of processes or threads.

The general idea is that a process/thread captures a single flow of control,
and a concurrent program or environment will have many of these at a
time.

A scheduler manages which threads are executing at any time, and how
control passes switches between them.

There are many design tradeoffs here, concerning memory separation,
mutual protection, communication, scheduling, signalling, . . .

Usually “processes” are heavyweight and “threads” lightweight, but there
is no hard-and-fast separation. Complete systems may include multiple
layers of concurrency.

Ian Stark APL13 2008-02-28



Critical Sections

A central issue with multiple explicit threads is to avoid interference
through shared memory.

void moveBy(int dx, int dy) {
System.out.println("Moving by "+dx+","+dy);
x = x+dx;
y = y+dy;
System.out.println("Completed move");

}

void moveTo(int newx, int newy) {
System.out.println("Moving to "+newx+","+newy);
x = newx;
y = newy;
System.out.println("Completed move");

}

Ian Stark APL13 2008-02-28



Critical Sections

A central issue with multiple explicit threads is to avoid interference
through shared memory.

void moveBy(int dx, int dy) { void moveTo(int newx, int newy) {
. .
. .

x = x+dx; x = newx;
y = y+dy; y = newy;

. .

. .
} }

Ian Stark APL13 2008-02-28



Critical Sections

A central issue with multiple explicit threads is to avoid interference
through shared memory.

void moveBy(int dx, int dy) { void moveTo(int newx, int newy) {
. .
. .

x = x+dx; x = newx;
y = y+dy; y = newy;

. .

. .
} }

Because both methods access the fields x and y, it is vital that these two
critical sections of code are not executing at the same time.

Ian Stark APL13 2008-02-28



Locks and More

There are many ways to ensure critical sections do not interfere, and
refinements to make sure that these constraints do not disable desired
concurrency.

Locks
Mutexes
Semaphores
Condition variables
Monitors etc.

These themselves need an underlying locking mechanism, either in
hardware (test-and-set, compare-and-swap,. . . ) or software (spinlock,
various busy-wait algorithms).

Ian Stark APL13 2008-02-28



Outline

1 Concurrency

2 Java

3 Erlang

Ian Stark APL13 2008-02-28



Concurrency in Java

Java supports concurrent programming as an integral part of the language:
threading is always available, although details of its implementation and
scheduling will differ between platforms.

There is a class Thread, and threads can be explicitly created and set
running on arbitrary code. Threads have unique identifiers, names, and
integer priorities.

Parent code can spawn multiple child threads, and then wait for individual
children to terminate.

Ian Stark APL13 2008-02-28



Synchronized Methods

Java provides mutual exclusion for critical sections through the
synchronized primitive.

synchronized void moveBy(int dx, int dy) {
System.out.println("Moving by "+dx+","+dy);
x = x+dx;
y = y+dy;
System.out.println("Completed move");

}

synchronized void moveTo(int newx, int newy) {
System.out.println("Moving to "+newx+","+newy);
x = newx;
y = newy;
System.out.println("Completed move");

}

Ian Stark APL13 2008-02-28



Synchronized Methods

Two move methods cannot now execute at the same time on the same
object.

synchronized void moveBy(int dx, int dy) {
System.out.println("Moving by "+dx+","+dy);
x = x+dx;
y = y+dy;
System.out.println("Completed move");

}

synchronized void moveTo(int newx, int newy) {
System.out.println("Moving to "+newx+","+newy);
x = newx;
y = newy;
System.out.println("Completed move");

}

Ian Stark APL13 2008-02-28



Synchronized Methods

Each synchronized method must acquire a lock before starting and
release it when finished.

synchronized void moveBy(int dx, int dy) {
System.out.println("Moving by "+dx+","+dy);
x = x+dx;
y = y+dy;
System.out.println("Completed move");

}

synchronized void moveTo(int newx, int newy) {
System.out.println("Moving to "+newx+","+newy);
x = newx;
y = newy;
System.out.println("Completed move");

}

Ian Stark APL13 2008-02-28



Synchronized Expressions

Every Java object has an implicit associated lock, used by its
synchronized methods. This can also be used to arrange exclusive access
to any block of code:

void moveBy(int dx, int dy) {
System.out.println("Moving by "+dx+","+dy);
synchronized(this) {

x = x+dx; // Only this section of the
y = y+dy; // code is critical

}
System.out.println("Completed move");

}

The locking object need not be this, and careful use of multiple lock
objects can give finer-grained concurrency.

Ian Stark APL13 2008-02-28



Condition Variables

Java refines critical regions with basic condition variables.

Synchronized code that finds things are not suitable for it to proceed
may wait() on the condition variable associated with its lock. This
blocks the code and releases the lock.
Another thread can acquire the lock and do some work. Because this
may change the situation for the other thread, it should notify() or
notifyAll() other threads of this.
Threads waiting on the condition variable will be made runnable
again, and can check to see if they are now ready to proceed.

Having threads block saves on busy waiting, and ensures that they only
wake when there is something to check.

Ian Stark APL13 2008-02-28



A Simple Blocking Method

class Pigeonhole {

private Object contents = null;

synchronized void put (Object o) {

while (contents != null) // Wait until the pigeonhole is empty
try { wait(); }
catch (InterruptedException ignore) { return; }

contents = o; // Fill the pigeonhole
notifyAll (); // Tell anyone who might be interested

}
...

}

Ian Stark APL13 2008-02-28



Java Concurrency

Summary:

Java provides concurrency within the language.
Explicit spawning of multiple threads.
Threads communicate through shared memory.
Critical regions can be synchronized
Condition variables with wait and notify to control shared resources.

The library package java. util .concurrent provides several advanced and
flexible concurrency operations, requiring more explicit management (and
more expertise).

Ian Stark APL13 2008-02-28



Outline

1 Concurrency

2 Java

3 Erlang

Ian Stark APL13 2008-02-28



Erlang

The Erlang programming language was originally created by Ericsson for
telecommunications equipment. However, it is a general-purpose
concurrent and distributed language, now with an open-source
implementation and a number of industrial users.

Ericsson AXD 301 multiservice 10–160Gbit/s switch (l,c)

Nortel 8661 SSL Acceleration Ethernet Routing Switch (r)

Ian Stark APL13 2008-02-28



Some Erlang Features

Courtesy of http://www.erlang.org/faq :

Declarative, functional language
Dynamic types
Pattern matching, list comprehension
Concurrency, thousands of lightweight threads (at least)

Distributed, transparently
Hot code upgrading
Robust, fault tolerant
Soft realtime, millisecond tolerance
Mnesia distributed in-memory database
OTP, Open Telecoms Library

Ian Stark APL13 2008-02-28

http://www.erlang.org/faq


Concurrency in Erlang

Erlang uses share-nothing concurrency, where threads have no shared
mutable store.

Instead, communication is by message-passing, based on the Actor model,
and similar to some concurrent object-oriented languages and process
calculi.

Every thread has a mailbox, to which other threads can send messages.
The thread sifts through received messages by pattern-matching.

Messages may include arbitrary data, including the names of other
mailboxes. This allows the communication topology between threads to
change during execution.

Ian Stark APL13 2008-02-28



Erlang Mailboxes

Message server from http://www.erlang.org/doc/getting_started/

% User_List names users and says which client node they are at
server(User_List) −>

receive
{From, logon, Name} −>

New_User_List = server_logon(From, Name, User_List),
server(New_User_List);

{From, logoff} −>
New_User_List = server_logoff(From, User_List),
server(New_User_List);

{From, message_to, To, Message} −>
server_transfer(From, To, Message, User_List),
server(User_List)

end.

Ian Stark APL13 2008-02-28

http://www.erlang.org/doc/getting_started/


Erlang Concurrency

Summary:

Erlang provides concurrency within the language.
Explicit spawning of multiple threads.
Threads communicate through message-passing
No shared memory means no critical regions
Pattern-matching on mailboxes for coding interaction

Ian Stark APL13 2008-02-28



Summary

Concurrency is useful (efficiency, responsiveness, speed)
But can be tricky (interference, deadlock, fairness)
Concurrency can be in the language, in libraries, or in both
Java provides shared-memory concurrency
Java manages concurrency with locks and condition variables
Erlang provides message-passing concurrency
Erlang manages concurrency with pattern-matching mailboxes

Ian Stark APL13 2008-02-28


	Concurrency
	Java
	Erlang

