
Advances in Programming Languages
APL11: Heterogeneous Metaprogramming in F#

Ian Stark

School of Informatics
The University of Edinburgh

Thursday 21 February 2008
Semester 2 Week 7

http://www.inf.ed.ac.uk/~stark

Topic: Domain-Specific vs. General-Purpose Languages

This is the second of three lectures on integrating domain-specific
languages with general-purpose programming languages. In particular,
SQL for database queries.

Using SQL from Java

LINQ: .NET Language Integrated Query

Language integration for F# metaprogramming

Don Syme. Leveraging .NET Meta-programming Components from F#:
Integrated Queries and Interoperable Heterogeneous Execution.
In Proceedings of the 2006 ACM SIGPLAN Workshop on ML, Sep. 2006.

Ian Stark APL11 2008-02-21

Topic: Domain-Specific vs. General-Purpose Languages

This is the second of three lectures on integrating domain-specific
languages with general-purpose programming languages. In particular,
SQL for database queries.

Using SQL from Java

LINQ: .NET Language Integrated Query

Language integration for F# metaprogramming

Don Syme. Leveraging .NET Meta-programming Components from F#:
Integrated Queries and Interoperable Heterogeneous Execution.
In Proceedings of the 2006 ACM SIGPLAN Workshop on ML, Sep. 2006.

Ian Stark APL11 2008-02-21

Outline

1 Metaprogramming

2 F#

3 Examples of metaprogramming in F# with LINQ

Ian Stark APL11 2008-02-21

Outline

1 Metaprogramming

2 F#

3 Examples of metaprogramming in F# with LINQ

Ian Stark APL11 2008-02-21

Metaprogramming

The term metaprogramming covers almost any situation where a program
manipulates code, either its own or that of some other program. This may
happen in many ways, including for example:

Textual manipulation of code as strings
Code as a concrete datatype
Code as an abstract datatype
Code generation at compile time or run time
Self-modifying code
Staged computation

Although this would also include any compiler or interpreter, the idea of
metaprogramming usually indicates specific language features, or especially
close integration between the subject and object programs.

Ian Stark APL11 2008-02-21

Metaprogramming Examples

Macros

#define geometric_mean(x,y) = sqrt(x∗y)

#define BEGIN {
#define END }

#define LOOP(var,low,high,body) = \
for (int var=low; var<high; var++) BEGIN body END

int total = 0; LOOP(i,1,10,total=total+i;)

Here geometric_mean is an inlined function; while the non-syntactic
LOOP macro is building code at compile time.

Ian Stark APL11 2008-02-21

Metaprogramming Examples

C++ Templates

template<int n>
Vector<n> add(Vector<n> lhs, Vector<n> rhs)
{

Vector<n> result = new Vector<n>;
for (int i = 0; i < n; ++i)

result .value[i] = lhs.value[i] + rhs.value[i];
return(result);

}

This template describes a general routine for adding vectors of arbitrary
dimension. Compile-time specialisation can give custom code for fixed
dimensions if required. The C++ Standard Template Library does a lot of
this kind of thing.

Ian Stark APL11 2008-02-21

Metaprogramming Examples

Java reflection

Class c = Class.forName("java.lang.System"); // Fetch System class
Field f = c.getField("out"); // Get static field
Object p = f.get(null); // Extract output stream
Class cc = p.getClass(); // Get its class
Class types[] = new Class[] { String.class }; // Identify argument types
Method m = cc.getMethod("println", types); // Get desired method
Object a[] = new Object[] { "Hello, world" }; // Build argument array
m.invoke(p,a); // Invoke method

Reflection of this kind in Java and many other languages allows for
programs to indulge in runtime introspection. This is heavily used, for
example, by toolkits that manipulate Java beans.

Ian Stark APL11 2008-02-21

Metaprogramming Examples

Javascript eval

eval("3+4"); // Returns 7

a = "5−"; b = "2";
eval(a+b); // Returns 3, result of 5−2

eval(b+a); // Runtime syntax error

b = "1";
c = "a+a+b";
eval(eval(c)); // Returns 3, result of 5−5−1

Any language offering this has to include at least a parser and interpreter
within its runtime.

Ian Stark APL11 2008-02-21

Metaprogramming Examples

Lisp eval

(eval ’(+ 3 4)) ; Result is 7

(eval ‘(+ ,x ,x ,x))) ; Result is 3∗x, whatever x is

(eval−after−load "bibtex"
’(define−key bibtex−mode−map

[(meta backspace)] ’backward−kill−word))

Unlike Javascript eval, code here is structured data, built using quote
’(...) The backquote or quasiquote ‘(...) allows computed values to
be inserted using the antiquotation comma ,(...).

Ian Stark APL11 2008-02-21

Metaprogramming Examples

MetaOCaml

let x = .< 4+2 >. ;;
val x : int code = .< 4+2 >.

let y = .< ~.x + ~.x >. ;;
val y : int code = .< (4+2)+(4+2) >.

let z = .! y ;;
val z : int = 12

Arbitrary OCaml code can be quoted .< >., antiquoted ~. and executed
.! . All these can be nested, giving a multi-stage programming language
with detailed control over exactly what parts are evaluated when in the
chain from source to execution.

Ian Stark APL11 2008-02-21

Metaprogramming Examples

MetaOCaml

let x = .< 4+2 >. ;;
val x : int code = .< 4+2 >.

let y = .< ~.x + ~.x >. ;;
val y : int code = .< (4+2)+(4+2) >.

let z = .! y ;;
val z : int = 12

Various research projects have implemented multi-stage versions of (at
least) Scheme, Standard ML and Java/C#.

Ian Stark APL11 2008-02-21

Metaprogramming Examples

MetaOCaml

let x = .< 4+2 >. ;;
val x : int code = .< 4+2 >.

let y = .< ~.x + ~.x >. ;;
val y : int code = .< (4+2)+(4+2) >.

let z = .! y ;;
val z : int = 12

This is homogeneous metaprogramming: the language at all stages is
OCaml. There is a version of MetaOCaml that supports heterogeneous
metaprogramming, with final execution of the code offshored into C.

(pun)

Ian Stark APL11 2008-02-21

Outline

1 Metaprogramming

2 F#

3 Examples of metaprogramming in F# with LINQ

Ian Stark APL11 2008-02-21

F#

F# is a version of ML for the .NET platform. It is not unique in this:
there is also SML.NET, implementing Standard ML, which itself grew
from the MLj compiler for the Java virtual machine.

Easy F#

let rec fib n = match n with 0 | 1 −> 1 | n −> fib (n−1) + fib (n−2)

let build first last = System.String.Join(" ", [|first; last |])

let name = build "Joe" "Smith"

To a (poor) first approximation, F# is OCaml syntax with .NET libraries.

Ian Stark APL11 2008-02-21

F#

Interoperability with the .NET framework and other .NET languages is
central to F#.

Core syntax is OCaml: with higher-order functions, lists, tuples,
arrays, records, . . .
Objects are nominal: with classes, inheritance, dot notation for field
and method selection, . . .
(So no structural subtyping for objects, nor any row polymorphism)
.NET toys: extensive libraries, concurrent garbage collector,
install-time/run-time (JIT) compilation, debuggers, profilers, . . .
Creates and consumes .NET/C# types and values; can call and be called
from other .NET languages.
Generates and consumes .NET code: can exchange functions with other
languages, and polymorphic expressions are exported with generic types.

Ian Stark APL11 2008-02-21

Outline

1 Metaprogramming

2 F#

3 Examples of metaprogramming in F# with LINQ

Ian Stark APL11 2008-02-21

LINQ Metaprogramming in C#

Recall from the last lecture that LINQ→SQL passes on the information
needed to evaluate a query as an expression tree. By analyzing this, a
complex expression combining several query operations might be executed
in a single SQL call to the database.

Expression trees are built as required, and may include details of C#
source code. For example:

Expression<Func<int,bool>> test = (id => (id<max));

Now test is not an executable function, but a data structure representing
the given lambda expression.

This is quotation, but implicit: rather than having syntax to mark
quotation of (id => (id<max)), the compiler deduces this from its
Expression type.

Ian Stark APL11 2008-02-21

Quotations in F#

Simple quote

> open Microsoft.FSharp.Quotations.Typed

− let a = <@ 3 @>;;
val a : Expr<int>

> a;;
val it : Expr<int> = <@ (Int32 3) @>

F# provides explicit quotation markers. Here the interactive response
exposes the internal structure of an expression.

Ian Stark APL11 2008-02-21

Quotations in F#

Larger quote

> <@ "Hello " + "World" @>;;
val it : Expr<string>
= <@ (App (App (Microsoft.FSharp.Core.Operators.op_Addition)

((String "Hello")))
((String "World"))) @>

A more complex quotation gives a more complex expression. Although
verbose, the structure is clearly the same.

Ian Stark APL11 2008-02-21

Quotations in F#

Function quote

> <@ fun x −> x+1 @>;;
val it : Expr<(int −> int)>
= <@
fun x#39844.4 −>

(App
(App (Microsoft.FSharp.Core.Operators.op_Addition) x#39844.4)
((Int32 1))) @>

An expression of function type includes details of the function body. Here
x#39844.4 is a variable name chosen by the expression printer.

Ian Stark APL11 2008-02-21

Quotations Templates

Quote with hole

> let f = <@ 5 + _ @>;;
val f : (Expr<int> −> Expr<int>)

> f a;;
val it : Expr<int>
= <@
(App (App (Microsoft.FSharp.Core.Operators.op_Addition) ((Int32 5)))

((Int32 3))) @>

A quotation with one or more holes gives a function mapping expressions
to expressions: building large expressions from smaller ones. The operation
lift : ’a −> Expr<’a> allows antiquotation, plugging in runtime values.

Ian Stark APL11 2008-02-21

Application: F# to SQL by LINQ

Query in memory

val (|>) : ’a −> (’a −> ’b) −> ’b

let query =
fun db −>

db.Employees
|> where (fun e −> e.City = "London")
|> select (fun e −> (e.Name,e.Address))

The query function will inspect an in-memory datastructure db.Employees,
filtering those working in London and projecting out their name and
address.

Ian Stark APL11 2008-02-21

Application: F# to SQL by LINQ

Query via SQL

val (|>) : ’a −> (’a −> ’b) −> ’b

let query = SQL
<@ fun db −>

db.Employees
|> where (fun e −> e.City = "London")
|> select (fun e −> (e.Name,e.Address)) @>

Quoting the internals now gives a query function that will inspect an external
database instead.

Ian Stark APL11 2008-02-21

Application: F# to SQL by LINQ

Query via SQL

val (|>) : ’a −> (’a −> ’b) −> ’b

let query = SQL
<@ fun db −>

db.Employees
|> where (fun e −> e.City = "London")
|> select (fun e −> (e.Name,e.Address)) @>

The SQL function takes a quoted expression and passes it to LINQ; which
compiles it to SQL and then hands it off to the database engine as:

SELECT Name, Address FROM Employees WHERE City = "London"

Ian Stark APL11 2008-02-21

Application: F# to SQL by LINQ

Query via SQL

val (|>) : ’a −> (’a −> ’b) −> ’b

let query = SQL
<@ fun db −>

db.Employees
|> where (fun e −> e.City = "London")
|> select (fun e −> (e.Name,e.Address)) @>

This heterogeneous metaprogramming leads to some mismatches between
F# and SQL semantics: for example, SQL date/time is rounded to 3msec,
less precise than .NET, and the definition of Math.Round is different.

Ian Stark APL11 2008-02-21

Application: F# Runtime Code Generation

Powers of x

> let rec power (n,x) = if n = 0 then 1 else x∗power(n−1,x);;
val power : int ∗ int −> int

> let power4 = fun x −> power (4,x);;
val power4 : int −> int

> power4 5;;
val it : int = 625

Ian Stark APL11 2008-02-21

Application: F# Runtime Code Generation

Powers of x

> let rec metapower (n,x) =
− if n = 0
− then <@ 1 @>
− else <@ _ ∗ _ @> (lift x) (metapower(n−1,x)) ;;
val metapower : int ∗ int −> Expr<int>

> let metapower4 = fun x −> metapower (4,x) ;;
val metapower4 : int −> Expr<int>

The metapower function computes xn as an expression rather than a value.

Ian Stark APL11 2008-02-21

Application: F# Runtime Code Generation

Powers of x

> metapower4 5
− ;;
val it : Expr<int>
= <@

(App (App (Microsoft.FSharp.Core.Operators.op_Multiply) (5))
(App (App (Microsoft.FSharp.Core.Operators.op_Multiply) (5))

(App (App (Microsoft.FSharp.Core.Operators.op_Multiply) (5))
(App (App (Microsoft.FSharp.Core.Operators.op_Multiply) (5))

((Int32 1)))))) @>

The metapower4 function computes x4 as an expression rather than a value.
Like the database expression, this too can be passed to LINQ.

Ian Stark APL11 2008-02-21

Application: F# Runtime Code Generation

Powers of x

> metapower4 5
− ;;
val it : Expr<int>
= <@

(App (App (Microsoft.FSharp.Core.Operators.op_Multiply) (5))
(App (App (Microsoft.FSharp.Core.Operators.op_Multiply) (5))

(App (App (Microsoft.FSharp.Core.Operators.op_Multiply) (5))
(App (App (Microsoft.FSharp.Core.Operators.op_Multiply) (5))

((Int32 1)))))) @>

LINQ provides lightweight code generation: at runtime the code is built,
JIT compiled, run, and then garbage collected away.

Ian Stark APL11 2008-02-21

Application: Accelerating F# by Outsourcing

let matrix f = Array2.init x y f // Fixed dimensions x,y
...
let neg a = matrix (fun i j −> − a.(i,j))
let (.+) a b = matrix (fun i j −> a.(i,j) + b.(i , j))
let (.&&) a b = matrix (fun i j −> a.(i,j) && b.(i , j))
..
let rotate a dx dy = matrix (fun i j −> a.((i+dx)%x,(j+dy)%y))
let count a = matrix (fun i j −> int_of_bool a.(i,j))

let nextGeneration(a) =
let N dx dy = rotate (count a) dx dy in
let sum = N (−1) (−1) .+ N (−1) 0 .+ N (−1) 1

.+ N 0 (−1) .+ N 0 1

.+ N 1 (−1) .+ N 1 0 .+ N 1 1 in
(sum .= three) .| | (sum .= two) .&& a);;

Ian Stark APL11 2008-02-21

Application: Accelerating F# by Outsourcing

open Microsoft.Research.DataParallelArrays // Use e.g. GPU pixel shader
let shape = [| x; y |] // Fixed dimensions x,y
..
let And (a:FPA) (b:FPA) = FPA.Min (a, b) // Built−in array operations
let Or (a:FPA) (b:FPA) = FPA.Max (a, b)
..
let Rotate (a:FPA) i j = a.Rotate([| i;j |])
..
let nextGenerationGPU (a:FPA) =

let N dx dy = Rotate a dx dy in
let sum = N (−1) (−1) .+ N (−1) 0 .+ N (−1) 1

.+ N 0 (−1) .+ N 0 1

.+ N 1 (−1) .+ N 1 0 .+ N 1 1 in
Or (Equals sum three) (And (Equals sum two) a);;

Ian Stark APL11 2008-02-21

Application: Accelerating F# by Outsourcing

Instead of writing the array code for this particular application, we can
write a general translator that does this for expressions:

val accelerate : (’a [,] −> ’a[,]) expr −> ’a[,] −> ’a[,]

All we need do to run life on the GPU is then:

let nextGenerationGPU’ = accelerate <@ nextGeneration @>

Caveat: The semantic mismatches are now more serious — actual floating-point arithmetic on

GPU and CPU is not bit-identical.

Ian Stark APL11 2008-02-21

Application: Accelerating F# by Outsourcing

Instead of writing the array code for this particular application, we can
write a general translator that does this for expressions:

val accelerate : (’a [,] −> ’a[,]) expr −> ’a[,] −> ’a[,]

All we need do to run life on the GPU is then:

let nextGenerationGPU’ = accelerate <@ nextGeneration @>

Caveat: The semantic mismatches are now more serious — actual floating-point arithmetic on

GPU and CPU is not bit-identical.

Ian Stark APL11 2008-02-21

Application: Accelerating F# by Outsourcing

Instead of writing the array code for this particular application, we can
write a general translator that does this for expressions:

val accelerate : (’a [,] −> ’a[,]) expr −> ’a[,] −> ’a[,]

All we need do to run life on the GPU is then:

let nextGenerationGPU’ = accelerate <@ nextGeneration @>

Caveat: The semantic mismatches are now more serious — actual floating-point arithmetic on

GPU and CPU is not bit-identical.

Ian Stark APL11 2008-02-21

Next Lecture

Polymorphic typing of units of measure in F#
Andrew Kennedy

Microsoft Research Cambridge

also

Compiling with Continuations, Continued
Seminar

Laboratory for Foundations of Computer Science
Room 2511, James Clerk Maxwell Building

4pm Monday 25 February 2008

Ian Stark APL11 2008-02-21

http://research.microsoft.com/~akenn/

Summary

Metaprogramming ranges from syntactic expansion through hygienic
macros to staged computation and runtime code generation.
F# is an ML for .NET, with an emphasis on interlanguage working.
Quotations and templates bring metaprogramming to F#.
F# can use LINQ to generate SQL . . .
. . . or native code at runtime . . .
. . . or to outsource execution wherever seems best.

Ian Stark APL11 2008-02-21

	Metaprogramming
	F#
	Examples of metaprogramming in F# with LINQ

