
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Advances in Programming Languages
APL1: What’s so important about language?

Ian Stark

School of Informatics
The University of Edinburgh

Thursday 10 January 2008
Semester 2 Week 1

http://www.inf.ed.ac.uk/~stark

What matters in a programming language?

Easy starter questions.

Name some programming languages.

Identify some of their features and characteristics.

We might like a language that is:

Easy to learn, quick to write, expressive, concise, powerful,
supported, well-provided with libraries, cheap, popular, . . .

It might help us to write programs that are:

Readable, correct, fast, reliable, predictable, maintainable,
secure, robust, portable, testable, composable, . . .

Ian Stark APL1 2008-01-10

What matters in a programming language?

Easy starter questions.

Name some programming languages.

Identify some of their features and characteristics.

We might like a language that is:

Easy to learn, quick to write, expressive, concise, powerful,
supported, well-provided with libraries, cheap, popular, . . .

It might help us to write programs that are:

Readable, correct, fast, reliable, predictable, maintainable,
secure, robust, portable, testable, composable, . . .

Ian Stark APL1 2008-01-10

What matters in a programming language?

Easy starter questions.

Name some programming languages.

Identify some of their features and characteristics.

We might like a language that is:

Easy to learn, quick to write, expressive, concise, powerful,
supported, well-provided with libraries, cheap, popular, . . .

It might help us to write programs that are:

Readable, correct, fast, reliable, predictable, maintainable,
secure, robust, portable, testable, composable, . . .

Ian Stark APL1 2008-01-10

What matters in a programming language?

Easy starter questions.

Name some programming languages.

Identify some of their features and characteristics.

We might like a language that is:

Easy to learn, quick to write, expressive, concise, powerful,
supported, well-provided with libraries, cheap, popular, . . .

It might help us to write programs that are:

Readable, correct, fast, reliable, predictable, maintainable,
secure, robust, portable, testable, composable, . . .

Ian Stark APL1 2008-01-10

Shaping the conceivable

Languages frame the way we think, and the programs we can imagine.

Sapir-Whorf Hypothesis

We dissect nature along lines laid down by our native language

This claim is not without controversy; both in its original domain of linguis-
tics, and as more recently applied to programming languages.

Wittgenstein: The limits of my language mean the limits of my world
[Tractatus Logico-Philosophicus, 1922]

Orwell: The purpose of Newspeak was not only to provide a medium of
expression for the world-view and mental habits proper to the devotees of
Ingsoc, but to make all other modes of thought impossible [1984, 1949]

Perlis: A language that doesn’t affect the way you think about
programming, is not worth knowing [Epigrams on Programming, 1982]

Ian Stark APL1 2008-01-10

Shaping the conceivable

Languages frame the way we think, and the programs we can imagine.

Sapir-Whorf Hypothesis

We dissect nature along lines laid down by our native language

Boole: Language is an instrument of human reason, not merely a medium
for the expression of thought [An Investigation of the Laws of Thought, 1854]

Wittgenstein: The limits of my language mean the limits of my world
[Tractatus Logico-Philosophicus, 1922]

Orwell: The purpose of Newspeak was not only to provide a medium of
expression for the world-view and mental habits proper to the devotees of
Ingsoc, but to make all other modes of thought impossible [1984, 1949]

Perlis: A language that doesn’t affect the way you think about
programming, is not worth knowing [Epigrams on Programming, 1982]

Ian Stark APL1 2008-01-10

Shaping the conceivable

Languages frame the way we think, and the programs we can imagine.

Sapir-Whorf Hypothesis

We dissect nature along lines laid down by our native language

Boole: Language is an instrument of human reason, not merely a medium
for the expression of thought [An Investigation of the Laws of Thought, 1854]

Wittgenstein: The limits of my language mean the limits of my world
[Tractatus Logico-Philosophicus, 1922]

Orwell: The purpose of Newspeak was not only to provide a medium of
expression for the world-view and mental habits proper to the devotees of
Ingsoc, but to make all other modes of thought impossible [1984, 1949]

Perlis: A language that doesn’t affect the way you think about
programming, is not worth knowing [Epigrams on Programming, 1982]

Ian Stark APL1 2008-01-10

Shaping the conceivable

Languages frame the way we think, and the programs we can imagine.

Sapir-Whorf Hypothesis

We dissect nature along lines laid down by our native language

Boole: Language is an instrument of human reason, not merely a medium
for the expression of thought [An Investigation of the Laws of Thought, 1854]

Wittgenstein: The limits of my language mean the limits of my world
[Tractatus Logico-Philosophicus, 1922]

Orwell: The purpose of Newspeak was not only to provide a medium of
expression for the world-view and mental habits proper to the devotees of
Ingsoc, but to make all other modes of thought impossible [1984, 1949]

Perlis: A language that doesn’t affect the way you think about
programming, is not worth knowing [Epigrams on Programming, 1982]

Ian Stark APL1 2008-01-10

Shaping the conceivable

Languages frame the way we think, and the programs we can imagine.

Sapir-Whorf Hypothesis

We dissect nature along lines laid down by our native language

Boole: Language is an instrument of human reason, not merely a medium
for the expression of thought [An Investigation of the Laws of Thought, 1854]

Wittgenstein: The limits of my language mean the limits of my world
[Tractatus Logico-Philosophicus, 1922]

Orwell: The purpose of Newspeak was not only to provide a medium of
expression for the world-view and mental habits proper to the devotees of
Ingsoc, but to make all other modes of thought impossible [1984, 1949]

Perlis: A language that doesn’t affect the way you think about
programming, is not worth knowing [Epigrams on Programming, 1982]

Ian Stark APL1 2008-01-10

That’s a bit philosophical

Does this really happen? Can programming languages help us write new
kinds of program? Or just stop us from writing bad ones?

LISP S-expressions, metaprogramming, treating code as data.

Higher-order functions. For example, parser combinators:

expr = (expr ‘then‘ opn ‘then‘ expr) ‘or‘ term
opn = (char ’+’) ‘or‘ (char ’-’)
term = ...

Laziness for infinite datastructures:

odds = 3 : [x+2 | x<-odds] -- Self-referential list

pi = g(1,180,60,2) where -- Gibbons’s spigot
g(q,r,t,i) =

let (u,y)=(3*(3*i+1)*(3*i+2),div(q*(27*i-12)+5*r)(5*t))
in y : g(10*q*i*(2*i-1),10*u*(q*(5*i-2)+r-y*t),t*u,i+1)

[Your suggestion here. . .]

Ian Stark APL1 2008-01-10

That’s a bit philosophical

Does this really happen? Maybe.

LISP S-expressions, metaprogramming, treating code as data.

Higher-order functions. For example, parser combinators:

expr = (expr ‘then‘ opn ‘then‘ expr) ‘or‘ term
opn = (char ’+’) ‘or‘ (char ’-’)
term = ...

Laziness for infinite datastructures:

odds = 3 : [x+2 | x<-odds] -- Self-referential list

pi = g(1,180,60,2) where -- Gibbons’s spigot
g(q,r,t,i) =

let (u,y)=(3*(3*i+1)*(3*i+2),div(q*(27*i-12)+5*r)(5*t))
in y : g(10*q*i*(2*i-1),10*u*(q*(5*i-2)+r-y*t),t*u,i+1)

[Your suggestion here. . .]

Ian Stark APL1 2008-01-10

Programmability and abstraction

The single most significant feature of computers is the fact that they are
programmable. Day-to-day, this is astoundingly underused.

Programmability means that computers can always do more. Best of all,
you can program new ways to program.

The concept of abstraction is an important way this appears in
programming languages.

Abstractions build upon each other: bytes, arrays, pointers, lists, trees,
files, sockets, databases, objects, procedures, threads, behaviours, . . .

Abstraction frees up you to think about other things, and you should. Let
the machine get on with its job.

Knuth: Premature optimization is the root of all evil
[Structured Programming with go to Statements, 1974]

Ian Stark APL1 2008-01-10

Programmability and abstraction

The single most significant feature of computers is the fact that they are
programmable. Day-to-day, this is astoundingly underused.

Programmability means that computers can always do more. Best of all,
you can program new ways to program.

The concept of abstraction is an important way this appears in
programming languages.

Abstractions build upon each other: bytes, arrays, pointers, lists, trees,
files, sockets, databases, objects, procedures, threads, behaviours, . . .

Abstraction frees up you to think about other things, and you should. Let
the machine get on with its job.

Knuth: Premature optimization is the root of all evil
[Structured Programming with go to Statements, 1974]

Ian Stark APL1 2008-01-10

What’s out there?

Some example “advances in programming languages” for this course:

Type-safe extensible records in OCaml

Join-patterns for concurrency in Polyphonic C#

LINQ and cross-language integration in .NET

JML for specification and checking in Java

Cyclone for pointer management in C

In addition, the coursework will involve you finding out about a further
topic, chosen from a similar list.

Ian Stark APL1 2008-01-10

Crystal ball gazing

Some areas to watch, and possible drivers of future language design:

Multicore

Quantum computing

Non-von-Neumann architectures, FPGAs

{Cloud,distributed,mobile,web} computing

Scripting

Security

Evidence-based trust

Language interoperability

OS programming

Don’t take this too seriously: some of these have been on the “soon to be
hot” list for decades. Today’s long shot: synthetic biology and
programming languages for life.

Ian Stark APL1 2008-01-10

The Secret Agenda of the Functional Illuminati

All advances in the design of mainstream programming languages shall
arise by transfer from existing functional languages.

Everything necessary can be found by contemplation of ML or Haskell.
The exceptionally adept may already discern all these in LISP.

X Automatic memory management (everywhere these days)
X Exceptions (ditto)
X Parametric polymorphism (see Java/C# generics)
X Implicit pointers (any OO language)
X First-class functions (C# delegates)
X Immutable values (see Java string)
X Closures (lambdas in C# and Visual Basic 9 (no, really!))
? Algebraic datatypes (still trying)
? ... to be continued ...

Type taster

Java has strong static typing: all programs are checked for type-safety at
compile-time. Bytecode is checked again on loading, before execution.

Java also has subtyping: a value of one type may be used at any more
general type. So String < Object, and every String is an Object.

Not all is well with Java types

String[] a = { "Hello" }; // A small string array
Object[] b = a; // Now a and b are the same array
b[0] = Boolean.FALSE; // Drop in a Boolean object
String s = a[0]; // Oh, dear
System.out.println(s); // This isn’t going to be pretty

This compiles without error or warning: in Java, if S<T then S[] < T[].
Except that it isn’t. So every array assignment gets a runtime check.

Ian Stark APL1 2008-01-10

Exercise

The next lecture is on Monday, and concerns Objective Caml (OCaml).
Before then, you should:

Read the Chapter 1 of the Objective Caml manual, The Core
Language.

Read A Hundred Lines of Caml.

Execute some of those lines on a convenient ocaml implementation.

Also, Wikipedia’s History of programming languages article is an easy read
and fairly informative.

Ian Stark APL1 2008-01-10

http://caml.inria.fr/pub/docs/manual-ocaml/manual003.html
http://caml.inria.fr/pub/docs/manual-ocaml/manual003.html
http://caml.inria.fr/about/taste.en.html
http://en.wikipedia.org/wiki/History_of_programming_languages

	Opening
	Programming Languages
	Types

