Notes about correlation (for Asgn 2)

Sharon Goldwater

Overview of assignment

Exploration of distributional similarity.

- Work with data extracted from Twitter (co-occurrence counts)
- Compare different ways to construct context vectors and compute similarities
- Analyze and discuss differences between approaches, qualitatively and quantitatively.

Work through the lab before you start the assignment!

Qualitative and quantitative analysis

Assignment asks you to do some of each.

- Examples of qualitative analysis:
 - Using visualization to illustrate/discuss examples or trends
 - Discussing one or a few examples in more detail, by looking at our dataset and/or other Tweets (e.g., use the Twitter search page).

- Examples of quantitative analysis:
 - Often: numerical comparison to a gold standard of accuracy
 - Here: consider other options, such as correlating similarity measures against word frequency.

One kind of quantitative analysis

- Assignment spec suggests you may want to consider correlation between similarity measures and word frequency.
- Why?
 - A good similarity measure should measure (only) similarity.
 - So presumably not be correlated with frequency.
 - Unless more frequent words really are more similar to each other! (Would need to test with humans... let’s assume not)
What is correlation?

• Intuitively: two random variables X and Y are correlated if, when the value of X increases, the value of Y also tends to increase (positive correlation) or decrease (negative correlation).

• Often, X and Y are different measurements for each data point.
 – A person’s height X and weight Y
 – A word’s frequency X and length Y

• Two standard ways to measure correlation:
 – Spearman (rank) correlation: roughly as above.
 – Pearson (linear) correlation: more specific.

Pearson correlation

• Mathematically: the covariance of X and Y, normalized by the product of their individual standard deviations.

• Intuitively: if I plot X against Y, how close to a perfect linear relationship do I see?
 – Does not measure the slope of the line, just whether there is one. (Compare rows 1 and 2, next page.)
 – Does not tell us if there’s some other non-linear relationship between X and Y. (See row 3, next page.)

• For data samples, the Pearson correlation coefficient is usually denoted r.

Examples datasets with Pearson r values shown:

Spearman rank correlation

• Mathematically: compute the Pearson correlation between the rank ordering of X and Y values.

• Intuitively: how close to a perfectly monotonic relationship do X and Y have? (i.e., when X increases, Y increases)

• For data samples, the Spearman rank correlation coefficient is usually denoted ρ or r_s.
Spearman correlation

Data with perfect rank correlation, but not perfectly linear:

Image by Skbkekas (CC-BY-SA 3.0)
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

Which one to use?

• If correlation is roughly linear, Pearson will normally yield stronger results (larger absolute values)
 – If hypothesis testing against the possibility of no correlation, likely to have higher significance level than Spearman.
 – But if using large samples from corpora, often nearly any result is clearly “non-zero”. We may care more about the actual degree of correlation.

• If correlation is non-linear, or nothing is known, use Spearman.

But usually we do know something

Best to look at the data first! For example, word freq vs length:

Seems to follow a pattern, but not strongly linear. Indeed,
 • Spearman: \(\rho = -0.18 \)
 • Pearson: \(r = -0.10 \)

(Note: I “jittered” the data so those with same \((x,y) \) are not right on top of each other.)

Log frequency

Of course, using log frequencies is often more sensible:

We now have
 • Spearman: \(\rho = -0.18 \)
 • Pearson: \(r = -0.21 \)

Notice that \(\rho \) is not affected by rescaling the data. \(r \) is higher, but still only a weak linear correlation.
So, which one to use?

- So, Pearson can still work if there is an obvious transformation to make the correlation roughly linear.

- But if in doubt, usually fine to use Spearman.

- As with all statistics, many subtleties if using for really careful analysis (see statistics course or online tutorials), but what I’ve said is probably enough for exploratory studies (i.e., your assignment).