Syntax/Semantics interface
(Semantic analysis)

Sharon Goldwater
(based on slides by James Martin and Johanna Moore)

15 November 2019
Last time

- Discussed properties we want from a meaning representation:
 - compositional
 - verifiable
 - canonical form
 - unambiguous
 - expressive
 - allowing inference

- Argued that first-order logic has all of these except compositionality, and is a good fit for natural language.

- Adding λ-expressions to FOL allows us to compute meaning representations compositionally.
Today

• We’ll see how to use λ-expressions in computing meanings for sentences: syntax-driven semantic analysis.

• But first: a final improvement to event representations
Verbal (event) MRs: the story so far

Syntax:
 NP give NP₁ NP₂

Semantics:
 \(\lambda z. \lambda y. \lambda x. Giving₁(x,y,z) \)

Applied to arguments:
 \(\lambda z. \lambda y. \lambda x. Giving₁(x,y,z) \) (book)(Mary)(John)

As in the sentence:
 John gave Mary a book.
 \(Giving₁(John, Mary, book) \)
But what about these?

John gave Mary a book for Susan.
\(\text{Giving}_2(John, \ Mary, \ Book, \ Susan)\)

John gave Mary a book for Susan on Wednesday.
\(\text{Giving}_3(John, \ Mary, \ Book, \ Susan, \ Wednesday)\)

John gave Mary a book for Susan on Wednesday in class.
\(\text{Giving}_4(John, \ Mary, \ Book, \ Susan, \ Wednesday, \ InClass)\)

John gave Mary a book with trepidation.
\(\text{Giving}_5(John, \ Mary, \ Book, \ Susan, \ Trepidation)\)
Problem with event representations

• Predicates in First-order Logic have fixed arity

• Requires separate *Giving* predicate for each syntactic **subcategorisation frame** (number/type/position of arguments).

• Separate predicates have no logical relation, but they ought to.
 – Ex. if *Giving*$_3(a, b, c, d, e)$ is true, then so are *Giving*$_2(a, b, c, d)$ and *Giving*$_1(a, b, c)$.

• See J&M for various unsuccessful ways to solve this problem; we’ll go straight to a more useful way.
Reification of events

• We can solve these problems by **reifying** events.
 – Reify: to “make real” or concrete, i.e., give events the same status as entities.
 – In practice, introduce variables for events, which we can quantify over.
Reification of events

• We can solve these problems by reifying events.
 – Reify: to “make real” or concrete, i.e., give events the same status as entities.
 – In practice, introduce variables for events, which we can quantify over.

• MR for John gave Mary a book is now

\[\exists e, z. \ Giving(e) \land Giver(e, John) \land Givee(e, Mary) \land Given(e, z) \land Book(z) \]

• The giving event is now a single predicate of arity 1: Giving(e); remaining conjuncts represent the participants (semantic roles).
Entailment relations

- This representation automatically gives us logical entailment relations between events. (“A entails B” means “A ⇒ B”.)

- John gave Mary a book on Tuesday entails John gave Mary a book.
Entailment relations

- This representation automatically gives us logical entailment relations between events. ("A entails B" means "A ⇒ B").

- John gave Mary a book on Tuesday entails John gave Mary a book. Similarly,

\[\exists e, z. \text{Giving}(e) \land \text{Giver}(e, \text{John}) \land \text{Givee}(e, \text{Mary}) \land \text{Given}(e,z) \land \text{Book}(z) \land \text{Time}(e, \text{Tuesday}) \]

entails

\[\exists e, z. \text{Giving}(e) \land \text{Giver}(e, \text{John}) \land \text{Givee}(e, \text{Mary}) \land \text{Given}(e,z) \land \text{Book}(z) \]

- Can add as many semantic roles as needed for the event.
At last: Semantic Analysis

- Given this way of representing meanings, how do we compute meaning representations from sentences?

- The task of **semantic analysis** or **semantic parsing**.

- Most methods rely on a (prior or concurrent) syntactic parse.

- Here: a compositional **rule-to-rule** approach based on FOL augmented with λ-expressions.
Syntax Driven Semantic Analysis

• Based on the principle of compositionality.
 – meaning of the whole built up from the meaning of the parts
 – more specifically, in a way that is guided by word order and syntactic relations.

• Build up the MR by augmenting CFG rules with semantic composition rules.

• Representation produced is literal meaning: context independent and free of inference

Note: other syntax-driven semantic parsing formalisms exist, e.g. Combinatory Categorial Grammar (Steedman, 2000) has seen a surge in popularity recently.
Example of final analysis

- What we’re hoping to build

Serving(e)
CFG Rules with Semantic Attachments

- To compute the final MR, we add **semantic attachments** to our CFG rules.

- These specify how to compute the MR of the parent from those of its children.

- Rules will look like:

\[A \rightarrow \alpha_1 \ldots \alpha_n \quad \{ f(\alpha_j.sem, \ldots, \alpha_k.sem) \} \]

- \(A.sem\) (the MR for \(A\)) is computed by applying the function \(f\) to the MRs of some subset of \(A\)'s children.
Proposed rules

• Ex: AyCaramba serves meat (with parse tree)

• Rules with semantic attachments for nouns and NPs:

 ProperNoun → AyCaramba \{AyCaramba\}
 MassNoun → meat \{Meat\}
 NP → ProperNoun \{ProperNoun.sem\}
 NP → MassNoun \{MassNoun.sem\}

• Unary rules normally just copy the semantics of the child to the parents (as in NP rules here).
What about verbs?

- Before event reification, we had verbs with meanings like:

 \(\lambda y. \lambda x. \text{Serving}(x,y) \)

- \(\lambda s \) allowed us to compose arguments with predicate.

- We can do the same with reified events:

 \(\lambda y. \lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, y) \)
What about verbs?

- Before event reification, we had verbs with meanings like:

 \[\lambda y. \lambda x. Serving(x,y) \]

- \(\lambda\)s allowed us to compose arguments with predicate.

- We can do the same with reified events:

 \[\lambda y. \lambda x. \exists e. Serving(e) \land Server(e, x) \land Served(e, y) \]

- This MR is the semantic attachment of the verb:

 \[
 \text{Verb} \rightarrow \text{serves} \\
 \{ \lambda y. \lambda x. \exists e. Serving(e) \land Server(e, x) \land Served(e, y) \}
 \]
Building larger constituents

- The remaining rules specify how to apply λ-expressions to their arguments. So, VP rule is:

\[
\text{VP} \rightarrow \text{Verb} \quad \text{NP} \quad \{ \text{Verb.sem(NP.sem)} \}\]
Building larger constituents

- The remaining rules specify how to apply λ-expressions to their arguments. So, VP rule is:

$$VP \rightarrow Verb \quad NP \quad \{Verb.sem(NP.sem)\}$$

where $Verb.sem = \lambda y. \lambda x. \exists e. Serving(e) \land Server(e, x) \land Served(e, y)$

and $NP.sem = Meat$
Building larger constituents

• The remaining rules specify how to apply λ-expressions to their arguments. So, VP rule is:

$$\text{VP} \rightarrow \text{Verb} \text{ NP} \quad \{\text{Verb.sem}(\text{NP.sem})\}$$

$$\text{VP} \quad \text{Verb} \quad \text{NP}$$

where $\text{Verb.sem} =$

$$\lambda y. \lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, y)$$

and $\text{NP.sem} =$

Meat

• So, $\text{VP.sem} =$

$$\lambda y. \lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, y) \text{ (Meat)} =$$

$$\lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, \text{Meat})$$
Finishing the analysis

• Final rule is:

\[
S \to NP \ VP \quad \{VP.sem(NP.sem)\}
\]

• now with \(VP.sem = \lambda x. \exists e. Serving(e) \land Server(e, x) \land Served(e, Meat)\)

and \(NP.sem = \)

\(AyCaramba\)

• So, \(S.sem = \)

\[
\lambda x. \exists e. Serving(e) \land Server(e, x) \land Served(e, Meat) \ (AyCa.) = \exists e. Serving(e) \land Server(e, AyCaramba) \land Served(e, Meat)
\]
Problem with these rules

• Consider the sentence Every child sleeps.

\[\forall x. \text{Child}(x) \Rightarrow \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, x) \]

• Meaning of Every child (involving \(x \)) is interleaved with meaning of sleeps

• As next slides show, our existing rules can’t handle this example, or quantifiers (from NPs with determiners) in general.

• We’ll show the problem, then the solution.
Breaking it down

- What is the meaning of Every child anyway?

- Every child ...

 ...sleeps \(\forall x. \ Child(x) \Rightarrow \exists e. \ Sleeping(e) \land \ Sleeper(e, x) \)

 ...cries \(\forall x. \ Child(x) \Rightarrow \exists e. \ Crying(e) \land \ Crier(e, x) \)

 ...talks \(\forall x. \ Child(x) \Rightarrow \exists e. \ Talking(e) \land \ Talker(e, x) \)

 ...likes pizza \(\forall x. \ Child(x) \Rightarrow \exists e. \ Liking(e) \land \ Liker(e, x) \land \ Likee(e, pizza) \)
Breaking it down

- What is the meaning of *Every child* anyway?

- Every child ...

 ...sleeps \(\forall x. \ Child(x) \Rightarrow \exists e. \ Sleeping(e) \land Sleeper(e, x) \)

 ...cries \(\forall x. \ Child(x) \Rightarrow \exists e. \ Crying(e) \land Crier(e, x) \)

 ...talks \(\forall x. \ Child(x) \Rightarrow \exists e. \ Talking(e) \land Talker(e, x) \)

 ...likes pizza \(\forall x. \ Child(x) \Rightarrow \exists e. \ Liking(e) \land Liker(e, x) \land Likee(e, pizza) \)

- So it looks like the meaning is something like

\[\forall x. \ Child(x) \Rightarrow Q(x) \]

- where \(Q(x) \) is some (potentially quite complex) expression with a predicate-like meaning
Could this work with our rules?

- We said \(S.\text{sem} \) should be \(VP.\text{sem}(NP.\text{sem}) \)

- but

 \[
 \lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y) \ (\forall x. \text{Child}(x) \Rightarrow Q(x))
 \]

 yields

 \[
 \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, \forall x. \text{Child}(x) \Rightarrow Q(x))
 \]

- This isn’t a valid FOL: complex expressions cannot be arguments to predicates.
Switching things around

• But if we define $S.sem$ as $NP.sem(VP.sem)$ it works!

• First, must make $NP.sem$ into a functor by adding λ:

$$\lambda Q \forall x. \ Child(x) \Rightarrow Q(x)$$
Switching things around

• But if we define $S.sem$ as $NP.sem(VP.sem)$ it works!

• First, must make $NP.sem$ into a functor by adding λ:

$$\lambda Q \forall x. \text{Child}(x) \Rightarrow Q(x)$$

• Then, apply it to $VP.sem$:

$$\lambda Q \forall x. \text{Child}(x) \Rightarrow Q(x) \ (\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))$$

$$\forall x. \text{Child}(x) \Rightarrow (\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y)) (x)$$

$$\forall x. \text{Child}(x) \Rightarrow \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, x)$$
But, how can we get the right NP.sem?

• We will need a new set of noun rules:

\[
\begin{align*}
\text{Noun} & \rightarrow \text{Child} \quad \{ \lambda x. \text{Child}(x) \} \\
\text{Det} & \rightarrow \text{Every} \quad \{ \lambda P. \lambda Q. \forall x. P(x) \Rightarrow Q(x) \} \\
\text{NP} & \rightarrow \text{Det Noun} \quad \{ \text{Det.sem}(\text{Noun.sem}) \}
\end{align*}
\]
But, how can we get our NP.sem?

- We will need a new set of noun rules:

 \[
 \text{Noun} \rightarrow \text{Child} \quad \{\lambda x. \text{Child}(x)\}
 \]

 \[
 \text{Det} \rightarrow \text{Every} \quad \{\lambda P. \lambda Q. \forall x. P(x) \Rightarrow Q(x)\}
 \]

 \[
 \text{NP} \rightarrow \text{Det Noun} \quad \{\text{Det.sem(Noun.sem)}\}
 \]

- So, Every child is derived as

 \[
 \lambda P. \lambda Q. \forall x. P(x) \Rightarrow Q(x) \quad (\lambda x. \text{Child}(x))
 \]

 \[
 \lambda Q \forall x. (\lambda x. \text{Child}(x))(x) \Rightarrow Q(x)
 \]

 \[
 \lambda Q \forall x. \text{Child}(x) \Rightarrow Q(x)
 \]
One last problem

- Our previous MRs for proper nouns were not functors, so don’t work with our new rule $S \rightarrow NP \hspace{1em} VP \hspace{1em} \{NP.sem(VP.sem)\}$.

\[S \rightarrow NP \hspace{1em} VP \hspace{1em} \{NP.sem(VP.sem)\} \]

$Kate \hspace{1em} (\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))$

\Rightarrow Not valid!
\[\lambda \text{ to the rescue again} \]

- Assign a different MR to proper nouns, allowing them to take VPs as arguments:
 \[
 \text{ProperNoun} \rightarrow \text{Kate} \quad \{\lambda P. P(Kate)\}
 \]

- For Kate sleeps, this gives us
 \[
 \lambda P. P(Kate) (\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))
 \]
 \[
 (\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))(Kate)
 \]
 \[
 \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, Kate))
 \]
• Assign a different MR to proper nouns, allowing them to take VPs as arguments:

\[
\text{ProperNoun} \rightarrow \text{Kate} \quad \{\lambda P. P(\text{Kate})\}
\]

• For \text{Kate sleeps}, this gives us

\[
\lambda P. P(\text{Kate}) \left(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y) \right)
\]
\[
(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))(\text{Kate})
\]
\[
\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, \text{Kate})
\]

• Terminology: we \textbf{type-raised} the the argument \(a\) of a function \(f\), turning it into a function \(g\) that takes \(f\) as argument. (1)

 – The final returned value is the same in either case.
Final grammar?

\[
\begin{align*}
S & \rightarrow NP \ VP & \{NP.sem(VP.sem)\} \\
VP & \rightarrow Verb & \{Verb.sem\} \\
VP & \rightarrow Verb \ NP & \{Verb.sem(NP.sem)\} \\
NP & \rightarrow Det \ Noun & \{Det.sem(Noun.sem)\} \\
NP & \rightarrow ProperNoun & \{ProperNoun.sem\} \\
Det & \rightarrow Every & \{\lambda P. \lambda Q. \forall x. P(x) \Rightarrow Q(x)\} \\
Noun & \rightarrow Child & \{\lambda x. Child(x)\} \\
ProperNoun & \rightarrow Kate & \{\lambda P. P(Kate)\} \\
Verb & \rightarrow sleeps & \{\lambda x. \exists e. Sleeping(e) \land Sleeper(e, x)\} \\
Verb & \rightarrow serves & \{\lambda y. \lambda x. \exists e. Serving(e) \land Server(e, x) \land Served(e, y)\}
\end{align*}
\]
Complications

• This grammar still applies Verbs to NPs when \textit{inside} the VP.

• Try doing this with our new type-raised NPs and you will see it doesn’t work.

• In practice, we need automatic type-raising rules that can be used exactly when needed, otherwise we keep the base type.
 - e.g., “base type” of proper noun is “entity”, not “function from (functions from entities to truth values) to truth values”.
What we did achieve

Developed a grammar with semantic attachments using many ideas now in use:

- existentially quantified variables represent events
- lexical items have function-like λ-expressions as MRs
- non-branching rules copy semantics from child to parent
- branching rules apply semantics of one child to the other(s) using λ-reduction.
Semantic parsing algorithms

- Given a CFG with semantic attachments, how do we obtain the semantic analysis of a sentence?

- One option (integrated): Modify syntactic parser to apply semantic attachments at the time syntactic constituents are constructed.

- Second option (pipelined): Complete the syntactic parse, then walk the tree bottom-up to apply semantic attachments.
Learning a semantic parser

• Much current research focuses on learning semantic grammars rather than hand-engineering them.

• Given sentences paired with meaning representations, e.g.,

 Every child sleeps \(\forall x. \ Child(x) \Rightarrow \exists e. \ Sleeping(e) \land Sleeper(e, x) \)
 AyCaramba serves meat \(\exists e. \ Serving(e) \land Server(e, AyCaramba) \land Served(e, Meat) \)

• Can we automatically learn

 – Which words are associated with which bits of MR?
 – How those bits combine (in parallel with the syntax) to yield the final MR?

• And, can we do this with less well-specified semantic representations?

See, e.g., ???
Summary

- Semantic analysis/semantic parsing: the process of deriving a meaning representation from a sentence.

- Uses the grammar and lexicon (augmented with semantic information) to create context-independent literal meanings.

- λ-expressions handle compositionality, building semantics of larger forms from smaller ones.

- Final meaning representations are expressions in first-order logic.