Last time

- Discussed properties we want from a meaning representation:
 - compositional
 - verifiable
 - canonical form
 - unambiguous
 - expressive
 - allowing inference

- Argued that first-order logic has all of these except compositionality, and is a good fit for natural language.

- Adding \(\lambda \)-expressions to FOL allows us to compute meaning representations compositionally.

Today

- We’ll see how to use \(\lambda \)-expressions in computing meanings for sentences: syntax-driven semantic analysis.

- But first: a final improvement to event representations

Verbal (event) MRs: the story so far

Syntax:

NP give NP_1 NP_2

Semantics:

\(\lambda z. \lambda y. \lambda x. \text{Giving}_1(x,y,z) \)

Applied to arguments:

\(\lambda z. \lambda y. \lambda x. \text{Giving}_1(x,y,z) \langle \text{book},\text{Mary},\text{John} \rangle \)

As in the sentence:

John gave Mary a book.

\(\text{Giving}_1(\text{John}, \text{Mary}, \text{book}) \)
But what about these?

John gave Mary a book for Susan.
\(\text{Giving}_2(\text{John, Mary, Book, Susan})\)

John gave Mary a book for Susan on Wednesday.
\(\text{Giving}_3(\text{John, Mary, Book, Susan, Wednesday})\)

John gave Mary a book for Susan on Wednesday in class.
\(\text{Giving}_4(\text{John, Mary, Book, Susan, Wednesday, InClass})\)

John gave Mary a book with trepidation.
\(\text{Giving}_5(\text{John, Mary, Book, Susan, Trepidation})\)

Problem with event representations

- Predicates in First-order Logic have fixed arity
- Requires separate \(\text{Giving}\) predicate for each syntactic \textbf{subcategorisation frame} (number/type/position of arguments).
- Separate predicates have no logical relation, but they ought to.
 - Ex. if \(\text{Giving}_3(a, b, c, d, e)\) is true, then so are \(\text{Giving}_2(a, b, c, d)\) and \(\text{Giving}_1(a, b, c)\).
- See J&M for various unsuccessful ways to solve this problem; we’ll go straight to a more useful way.

Reification of events

- We can solve these problems by \textbf{reifying} events.
 - Reify: to “make real” or concrete, i.e., give events the same status as entities.
 - In practice, introduce variables for events, which we can quantify over.

Reification of events

- We can solve these problems by \textbf{reifying} events.
 - Reify: to “make real” or concrete, i.e., give events the same status as entities.
 - In practice, introduce variables for events, which we can quantify over.

- MR for \textit{John gave Mary a book} is now

\[
\exists \, e, z. \, \text{Giving}(e) \land \text{Giver}(e, \text{John}) \land \text{Givee}(e, \text{Mary}) \\
\land \text{Given}(e, z) \land \text{Book}(z)
\]

- The giving event is now a single predicate of arity 1: \(\text{Giving}(e)\); remaining conjuncts represent the participants (semantic roles).
Entailment relations

- This representation automatically gives us logical entailment relations between events. ("A entails B" means "A ⇒ B".)

- John gave Mary a book on Tuesday entails John gave Mary a book.

Entailment relations

- This representation automatically gives us logical entailment relations between events. ("A entails B" means "A ⇒ B".)

- John gave Mary a book on Tuesday entails John gave Mary a book. Similarly,

 \[\exists e, z. \text{Giving}(e) \land \text{Giver}(e, \text{John}) \land \text{Givee}(e, \text{Mary}) \land \text{Given}(e, z) \land \text{Book}(z) \land \text{Time}(e, \text{Tuesday}) \]

 entails

 \[\exists e, z. \text{Giving}(e) \land \text{Giver}(e, \text{John}) \land \text{Givee}(e, \text{Mary}) \land \text{Given}(e, z) \land \text{Book}(z) \]

- Can add as many semantic roles as needed for the event.

At last: Semantic Analysis

- Given this way of representing meanings, how do we compute meaning representations from sentences?

- The task of semantic analysis or semantic parsing.

- Most methods rely on a (prior or concurrent) syntactic parse.

- Here: a compositional rule-to-rule approach based on FOL augmented with λ-expressions.

Syntax Driven Semantic Analysis

- Based on the principle of compositionality.
 - meaning of the whole built up from the meaning of the parts
 - more specifically, in a way that is guided by word order and syntactic relations.

- Build up the MR by augmenting CFG rules with semantic composition rules.

- Representation produced is literal meaning: context independent and free of inference

Note: other syntax-driven semantic parsing formalisms exist, e.g. Combinatory Categorial Grammar (Steedman, 2000) has seen a surge in popularity recently.
Example of final analysis

- What we’re hoping to build

```
S  \exists e. Serving(e) \land Server(e, AyCaramba) \land Served(e, Meat)
```

![Parse tree]

Proposed rules

- Ex: AyCaramba serves meat (with parse tree)

- Rules with semantic attachments for nouns and NPs:
 - ProperNoun → AyCaramba \{AyCaramba\}
 - MassNoun → meat \{Meat\}
 - NP → ProperNoun \{ProperNoun.sem\}
 - NP → MassNoun \{MassNoun.sem\}

- Unary rules normally just copy the semantics of the child to the parents (as in NP rules here).

CFG Rules with Semantic Attachments

- To compute the final MR, we add semantic attachments to our CFG rules.

- These specify how to compute the MR of the parent from those of its children.

- Rules will look like:

 $$A \rightarrow \alpha_1 \ldots \alpha_n \{f(\alpha_j.sem, \ldots, \alpha_k.sem)\}$$

- $A.sem$ (the MR for A) is computed by applying the function f to the MRs of some subset of A’s children.

What about verbs?

- Before event reification, we had verbs with meanings like:

 $$\lambda y. \lambda x. Serving(x, y)$$

- λs allowed us to compose arguments with predicate.

- We can do the same with reified events:

 $$\lambda y. \lambda x. \exists e. Serving(e) \land Server(e, x) \land Served(e, y)$$
What about verbs?

- Before event reification, we had verbs with meanings like:
 \[\lambda y. \lambda x. \text{Serving}(x,y) \]

- \(\lambda s \) allowed us to compose arguments with predicate.

- We can do the same with reified events:
 \[\lambda y. \lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, y) \]

- This MR is the semantic attachment of the verb:

 \[
 \text{Verb} \rightarrow \text{serves} \\
 \{ \lambda y. \lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, y) \}
 \]

Building larger constituents

- The remaining rules specify how to apply \(\lambda \)-expressions to their arguments. So, VP rule is:

 \[
 \text{VP} \rightarrow \text{Verb} \text{ NP} \{ \text{Verb.sem(NP.sem)} \}
 \]

- The remaining rules specify how to apply \(\lambda \)-expressions to their arguments.
 So, VP rule is:

 \[
 \text{VP} \rightarrow \text{Verb} \text{ NP} \{ \text{Verb.sem(NP.sem)} \}
 \]

 where \(\text{Verb.sem} = \lambda y. \lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, y) \)

 and \(\text{NP.sem} = \text{Meat} \)

 So, \(\text{VP.sem} = \lambda y. \lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, \text{Meat}) = \lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, \text{Meat}) \)
Finishing the analysis

• Final rule is:
 \[S \rightarrow NP \ VP \{ VP.sem(NP.sem) \} \]

• now with \(VP.sem = \)
 \[\lambda x. \exists e. Serving(e) \land Server(e, x) \land Served(e, Meat) \]

and \(NP.sem = AyCaramba \)

• So, \(S.sem = \)

\[\lambda x. \exists e. Serving(e) \land Server(e, x) \land Served(e, Meat) \]

\((AyCa.) = \)

\[\exists e. Serving(e) \land Server(e, AyCaramba) \land Served(e, Meat) \]

Problem with these rules

• Consider the sentence Every child sleeps.

\[\forall x. Child(x) \Rightarrow \exists e. Sleeping(e) \land Sleeper(e, x) \]

• Meaning of Every child (involving \(x \)) is interleaved with meaning of sleeps

• As next slides show, our existing rules can’t handle this example, or quantifiers (from NPs with determiners) in general.

• We’ll show the problem, then the solution.

Breaking it down

• What is the meaning of Every child anyway?

• Every child ...

 ...sleeps \(\forall x. Child(x) \Rightarrow \exists e. Sleeping(e) \land Sleeper(e, x) \)

 ...cries \(\forall x. Child(x) \Rightarrow \exists e. Crying(e) \land Crier(e, x) \)

 ...talks \(\forall x. Child(x) \Rightarrow \exists e. Talking(e) \land Talker(e, x) \)

 ...likes pizza \(\forall x. Child(x) \Rightarrow \exists e. Liking(e) \land Liker(e, x) \land Likee(e, pizza) \)

• So it looks like the meaning is something like

\[\forall x. Child(x) \Rightarrow Q(x) \]

• where \(Q(x) \) is some (potentially quite complex) expression with a predicate-like meaning
Could this work with our rules?

- We said S.sem should be VP.sem(NP.sem)

- but

 $\lambda y. \exists e. \text{Sleeping}(e) \wedge \text{Sleeper}(e, y) (\forall x. \text{Child}(x) \Rightarrow Q(x))$

 yields

 $\exists e. \text{Sleeping}(e) \wedge \text{Sleeper}(e, \forall x. \text{Child}(x) \Rightarrow Q(x))$

- This isn’t a valid FOL: complex expressions cannot be arguments to predicates.

Switching things around

- But if we define S.sem as NP.sem(VP.sem) it works!

- First, must make NP.sem into a functor by adding λ:

 $\lambda Q \forall x. \text{Child}(x) \Rightarrow Q(x)$

 Then, apply it to VP.sem:

 $\lambda Q \forall x. \text{Child}(x) \Rightarrow Q(x) \ (\lambda y. \exists e. \text{Sleeping}(e) \wedge \text{Sleeper}(e, y)))$

 $\forall x. \text{Child}(x) \Rightarrow (\lambda y. \exists e. \text{Sleeping}(e) \wedge \text{Sleeper}(e, y)) (x)$

 $\forall x. \text{Child}(x) \Rightarrow \exists e. \text{Sleeping}(e) \wedge \text{Sleeper}(e, x)$

But, how can we get the right NP.sem?

- We will need a new set of noun rules:

 $\begin{align*}
 \text{Noun} & \rightarrow \text{Child} \ \{\lambda x. \text{Child}(x)\} \\
 \text{Det} & \rightarrow \text{Every} \ \{\lambda P. \lambda Q. \forall x. P(x) \Rightarrow Q(x)\} \\
 \text{NP} & \rightarrow \text{Det} \ \text{Noun} \ \{\text{Det}.sem(\text{Noun}.sem)\}
 \end{align*}$
But, how can we get our NP.sem?

- We will need a new set of noun rules:
 - Noun → Child \{λx. Child(x)\}
 - Det → Every \{λP. λQ. ∀x. P(x) ⇒ Q(x)\}
 - NP → Det Noun \{Det.sem(Noun.sem)\}

- So, Every child is derived as
 \[λP. λQ. ∀x. P(x) ⇒ Q(x) (λx. Child(x))\]

- Terminology: we type-raised the the argument \(a\) of a function \(f\), turning it into a function \(g\) that takes \(f\) as argument. (!)
 - The final returned value is the same in either case.

One last problem

- Our previous MRs for proper nouns were not functors, so don’t work with our new rule \(S → NP \; VP \; \{NP.sem(VP.sem)\}\).

\[
\text{S} \quad \begin{array}{c}
\text{NP} \\
\text{VP} \\
\text{ProperNoun} \\
\text{Verb} \\
\text{Kate} \\
\text{sleeps}
\end{array}
\Rightarrow \text{Not valid!}
\]

- Assign a different MR to proper nouns, allowing them to take VPs as arguments:
 - ProperNoun → Kate \{\lambda P. P(Kate)\}
 - For Kate sleeps, this gives us
 \[\lambda P. P(Kate) (λy. \exists e. Sleeping(e) ∧ Sleeper(e, y))\]
 \[(λy. \exists e. Sleeping(e) ∧ Sleeper(e, y))(Kate)\]
 \[∃ e. Sleeping(e) ∧ Sleeper(e, Kate))\]
Final grammar?

\[
\begin{align*}
S & \rightarrow NP \ VP \quad \{NP.sem(VP.sem)\} \\
VP & \rightarrow \text{Verb} \quad \{\text{Verb.sem}\} \\
VP & \rightarrow \text{Verb} \ NP \quad \{\text{Verb.sem}(NP.sem)\} \\
NP & \rightarrow \text{Det} \ Noun \quad \{\text{Det.sem}(Noun.sem)\} \\
NP & \rightarrow \text{ProperNoun} \quad \{\text{ProperNoun.sem}\} \\
\text{Det} & \rightarrow \text{Every} \quad \{\lambda P. \lambda Q. \forall x. P(x) \Rightarrow Q(x)\} \\
\text{Noun} & \rightarrow \text{Child} \quad \{\lambda x. \text{Child}(x)\} \\
\text{ProperNoun} & \rightarrow \text{Kate} \quad \{\lambda P. P(\text{Kate})\} \\
\text{Verb} & \rightarrow \text{sleeps} \quad \{\lambda x. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, x)\} \\
\text{Verb} & \rightarrow \text{serves} \quad \{\lambda y. \lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, y)\}
\end{align*}
\]

Complications

- This grammar still applies Verbs to NPs when \textit{inside} the VP.
- Try doing this with our new type-raised NPs and you will see it doesn’t work.
- In practice, we need automatic type-raising rules that can be used exactly when needed, otherwise we keep the base type.

 - e.g., “base type” of proper noun is “entity”, not “function from (functions from entities to truth values) to truth values”.

What we did achieve

Developed a grammar with semantic attachments using many ideas now in use:

- existentially quantified variables represent events
- lexical items have function-like λ-expressions as MRs
- non-branching rules copy semantics from child to parent
- branching rules apply semantics of one child to the other(s) using λ-reduction.

Semantic parsing algorithms

- Given a CFG with semantic attachments, how do we obtain the semantic analysis of a sentence?
- One option (integrated): Modify syntactic parser to apply semantic attachments at the time syntactic constituents are constructed.
- Second option (pipelined): Complete the syntactic parse, then walk the tree bottom-up to apply semantic attachments.
Learning a semantic parser

• Much current research focuses on learning semantic grammars rather than hand-engineering them.

• Given sentences paired with meaning representations, e.g.,
 Every child sleeps: \(\forall x. \text{Child}(x) \Rightarrow \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, x) \)
 AyCaramba serves meat: \(\exists e. \text{Serving}(e) \land \text{Server}(e, AyCaramba) \land \text{Served}(e, \text{Meat}) \)

• Can we automatically learn
 – Which words are associated with which bits of MR?
 – How those bits combine (in parallel with the syntax) to yield the final MR?

• And, can we do this with less well-specified semantic representations?

See, e.g., ????

Summary

• Semantic analysis/semantic parsing: the process of deriving a meaning representation from a sentence.

• Uses the grammar and lexicon (augmented with semantic information) to create context-independent literal meanings

• \(\lambda \)-expressions handle compositionality, building semantics of larger forms from smaller ones.

• Final meaning representations are expressions in first-order logic.