Meaning representations

Sharon Goldwater
(based on slides by Frank Keller, Bonnie Webber, Mirella Lapata, and others)

13 November 2018
Recap: distributional semantics

• A useful way to represent meanings of individual words

• Can deal with notions of similarity

• But less clear how to deal with compositionality

• Also, we still haven’t discussed how to do inference
Example Question (6)

• Question
 Did Poland reduce its carbon emissions since 1989?

• Text available to the machine
 Due to the collapse of the industrial sector after the end of communism in 1989, all countries in Central Europe saw a fall in carbon emissions.

 Poland is a country in Central Europe.

• What is hard?
 – we need to do inference
 – a problem for sentential, not lexical, semantics
Meaning representations

• Vector space is one kind of meaning representation

• But to deal with compositionality and inference, we need meaning representations that are **symbolic** and **structured**.

• Next lecture, **semantic analysis**: how to get from sentences to their meaning representations (using syntax to help).

• But first we need to define the semantics we’re aiming at, i.e., a **meaning representation language** (MRL).
Basic assumption

The symbols in our meaning representations correspond to objects, properties, and relations in the world.

- *The world* may be the real world, or (usually) a formalized and well-specified world: a model or knowledge base of known facts.
 - **Ex 1**: a tiny world model containing 3 entities, and an exhaustive table of ‘who loves whom’ relations.
 - **Ex 2**: GeoQuery database [1], containing ~ 800 facts about US geography.
 - **Ex 3**: Freebase [2], “A community-curated database of well-known people, places, and things” with over 2.6 billion facts.

What do we want from an MRL?

Compositional: The meaning of a complex expression is a function of the meaning of its parts and of the rules by which they are combined.
What do we want from an MRL?

Compositional: The meaning of a complex expression is a function of the meaning of its parts and of the rules by which they are combined.

Verifiable: Can use the MR of a sentence to determine whether the sentence is *true* with respect to some given model of the world.

- In Ex 1 above, can establish the truth value of *everybody loves Mary* by checking it against the model.
What do we want from an MRL?

Unambiguous: an MR should have exactly one interpretation. So, an ambiguous sentence should have a different MR for each sense.

- Ex: each interpretation of *I made her duck* or *time flies like an arrow* should have a distinct MR.

- The job of producing all possible MRs for a given sentence will go to the semantic analyzer.

- We also defer the question of choosing which interpretation is correct.
What do we want from an MRL?

Canonical form: sentences with the same (literal) meaning should have the same MR.

- **Ex:** *I filled the room with balloons* should have the same canonical form as *I put enough balloons in the room to fill it from floor to ceiling.*

- **Ex:** Similarly, *Tanjore serves vegetarian food* and *Vegetarian dishes are served by Tanjore.*

- Simplifies inference and reduces storage needs; but also makes semantic analysis harder.
What do we want from an MRL?

Inference: we should be able to verify sentences not only directly, but also by drawing conclusions based on the input MR and facts in the knowledge base.

- Ex: from the MR for a query

 Did Poland reduce its carbon emissions?

- and the MRs for facts

 Carbon emmissions have fallen for all countries in Central Europe.

 Poland is a country in Central Europe.

- we should be able to infer the answer: **YES**.
What do we want from an MRL?

Expressivity: the MRL should allow us to handle a wide range of meanings and express appropriate relationships between the words in a sentence.

- Ideally, we could express the meaning of any natural language sentence.

- In practice, we may use simpler MRLs that cover a lot of what we want.

- For example...
FOL: First-order Logic (Predicate Logic)

- A pretty good fit to what we’d like.

- Example FOL expressions:
 - tall(Kim) \lor tall(Pierre)
 - likes(Sam, owner-of(Tanjore))
 - \exists x. cat(x) \land owns(Marie, x)
 - \exists x. movie(x) \land \forall y. person(y) \Rightarrow loves(y, x)
FOL: First-order Logic (Predicate Logic)

- Expressions are constructed from **terms**:
 - **constant and variable symbols** that represent entities
 - **function symbols** that allow us to indirectly specify entities
 - **predicate symbols** that represent properties of entities and relations between entities
FOL: First-order Logic (Predicate Logic)

- Expressions are constructed from terms:
 - constant and variable symbols that represent entities
 - function symbols that allow us to indirectly specify entities
 - predicate symbols that represent properties of entities and relations between entities

- Terms can be combined into predicate-argument structures, which in turn are combined into complex expressions using:
 - Logical connectives: \(\lor, \land, \neg, \Rightarrow \)
 - Quantifiers: \(\forall \) (universal quantifier, i.e., “for all”), \(\exists \) (existential quantifier, i.e. “exists”)
Constants in FOL

• Each constant symbol denotes exactly one entity:
 Scotland, EU, John, 2014

• Not all entities have a constant that denotes them:
 David Cameron’s right knee, this pen

• Several constant symbols may denote the same entity:
 The Evening Star ≡ Venus
 Scotland ≡ Alba
Predicates in FOL

• Predicates with one argument represent properties of entities:

 nation(Scotland), organization(EU), tall(John)

• Predicates with multiple arguments represent relations between entities:

 member-of(UK, EU), likes(John, Marie), introduced(John, Marie, Sue)

• We write “/N” to indicate that a predicate has arity N (takes N arguments)

 member-of/2, nation/1, tall/1, introduced/3
The semantics of predicates

- A predicate of arity \(N \) denotes the set of \(N \)-tuples that satisfy it.
 - \texttt{likes/2} is the set of \((x, y)\) pairs for which \texttt{likes}(x, y) is true.
 - In the following example world, a set of four pairs:
 - \texttt{likes(John, Marie)} \texttt{likes(Marie, Kim)} \texttt{tall(Kim)}
 - \texttt{likes(John, Kim)} \texttt{eats(Marie, pizza)} \texttt{nation(UK)}
 - \texttt{likes(Kim, UK)} \texttt{lives-in(Marie, UK)} \texttt{nation(USA)}

- If all arguments are instantiated, then the predicate-argument structure has a truth value (determined by comparing it to the set of facts in the world).
 - So, \texttt{likes(John, Kim)} is true, whereas \texttt{likes(John, UK)} is false.
Functions in FOL

• Like constants, are used to specify (denote) unique entities.

• Unlike constants, they refer to entities indirectly, so we don’t need to store as many constants.

 president(EU), father(John), right-knee(Cameron)

• Syntactically, they look like unary predicates, but denote entities, not sets.
Logical connectives

• Given FOL expressions P and Q, the meaning of an expression containing P and Q is determined from the meaning of each part and the logical connective.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P$</th>
<th>$P \land Q$</th>
<th>$P \lor Q$</th>
<th>$P \Rightarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>

Ex: $\text{likes(John, Kim)} \land \text{tall(John)}$ is true iff each predicate is true.
Variables in FOL

- Variable symbols (e.g., \(x, y, z \)) range over entities.

- An expression consisting only of a predicate with a variable among its arguments is interpreted as a set:

 \[\text{likes}(x, \text{Kim}) \] is the set of entities that like Kim.

- A predicate with a variable among its arguments only has a truth value if it is \textbf{bound} by a quantifier.

 \[\forall x. \text{likes}(x, \text{Kim}) \] has an interpretation as either true or false.
Universal Quantifier (\(\forall\))

- Can be used to express general truths:

 Cats are mammals has MR \(\forall x.\text{cat}(x) \Rightarrow \text{mammal}(x)\)

- This MR is true iff the *conjunction* of all similar expressions is true, where each of these *substitutes* a different constant for the variable.

 \[
 (\text{cat(Sam)} \Rightarrow \text{mammal(Sam)}) \land \\
 (\text{cat(Zoot)} \Rightarrow \text{mammal(Zoot)}) \land \\
 (\text{cat(Whiskers)} \Rightarrow \text{mammal(Whiskers)}) \land \\
 (\text{cat(UK)} \Rightarrow \text{mammal(UK)}) \land \\
 \ldots
 \]
Existential Quantifier (\exists)

• Used to express that a property/relation is true of some entity, without specifying which one:

 Marie owns a cat has MR $\exists x. \text{cat}(x) \land \text{owns}(\text{Marie}, x)$

• This MR is true iff the disjunction of all similar expressions is true, where each of these substitutes a different constant for the variable.

 $\text{(cat(Sam) \land \text{owns}(\text{Marie}, \text{Sam})) \lor}$
 $\text{(cat(Zoot) \land \text{owns}(\text{Marie}, \text{Zoot})) \lor}$
 $\text{(cat(Whiskers) \land \text{owns}(\text{Marie}, \text{Whiskers})) \lor}$
 $\text{(cat(UK) \land \text{owns}(\text{Marie}, \text{UK})) \lor}$
 \ldots
Existential Quantifier (\exists)

- Why use \land not \Rightarrow? Notice the difference between these two MRs:

 $\exists x.\text{cat}(x) \land \text{own}(\text{Marie}, x)$ vs $\exists x.\text{cat}(x) \Rightarrow \text{own}(\text{Marie}, x)$

 In English:

 There is something that is a cat and Marie owns it vs
 There is something that if it’s a cat, Marie owns it

- $P \Rightarrow Q$ is true if the antecedent (left of the \Rightarrow) is false.

- So the righthand MR is true if there is anything that’s not a cat!
 - If $\text{cat}(\text{UK})$ is false, then $\text{cat}(\text{UK}) \Rightarrow \text{owns}(\text{Marie}, \text{UK})$ is true, and so is $\exists x.\text{cat}(x) \Rightarrow \text{own}(\text{Marie}, x)$.
Quantifier scoping

• Consider the following sentence:

Everyone loves some movie

– No ambiguity in POS tags, syntactic structure, or word senses.
– But this sentence is still ambiguous!
Quantifier scoping

- Consider the following sentence:
 Everyone loves some movie
 - No ambiguity in POS tags, syntactic structure, or word senses.
 - But this sentence is still ambiguous!

- Two possible meanings:
 (a) There is a single movie that everyone loves
 (b) Everyone loves at least one movie, but the movies might be different

- This kind of ambiguity is called quantifier scope ambiguity
Quantifier scope ambiguity

• The two meanings have different MRs:

(a) \(\exists x. \text{movie}(x) \land \forall y. \text{person}(y) \Rightarrow \text{loves}(y, x) \)
(b) \(\forall y. \text{person}(y) \Rightarrow \exists x. \text{movie}(x) \land \text{loves}(y, x) \)

• In (a), the ‘\(\exists \)’ has scope over the ‘\(\forall \)’; in (b) it’s vice versa.

• Other examples of quantifier scope ambiguity:

A boy gave flowers to each teacher
Every cat chased a dog
MRs in FOL are verifiable, unambiguous, canonical.

Predicate-argument structure is a good match for natural language

- Predicate-like elements: verbs, prepositions, adjectives
- Argument-like elements: nouns, NPs

Determiners (a, some, every) and coordination (if, and, or) can often be expressed with logical connectives and quantifiers.

But what about compositionality?
Compositionality

- Suppose we have the following words with the following meanings:

<table>
<thead>
<tr>
<th>word</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marie</td>
<td>Marie</td>
</tr>
<tr>
<td>pizza</td>
<td>pizza</td>
</tr>
<tr>
<td>loves</td>
<td>love(x,y)</td>
</tr>
</tbody>
</table>

- How do we get from there to the meaning of the sentence Marie loves pizza?
Lambda (λ) Expressions

- Extension to FOL, allows us to work with ‘partially constructed’ formulae.

- A λ-expression consists of:
 - the Greek letter λ, followed by a variable (formal parameter);
 - a FOL expression that may involve that variable.

\[\lambda x.\text{sleep}(x) \] ‘The function that takes an entity x to the FOL expression $\text{sleep}(x)$’

- This lambda is the same one used in Python!
\textbf{\(\lambda\)-Reduction}

- A \(\lambda\)-expression can be \textbf{applied} to a \textbf{term}

\[
\lambda x. \text{sleep}(x) \ (\text{Marie})
\]

\textbf{functor} \hspace{1cm} \textbf{argument}

- This expression can be simplified using \textbf{\(\lambda\)-reduction}: replace the formal parameter with the term and remove the \(\lambda\). Result:

\[
\text{sleep(Marie)}
\]
Nested \(\lambda \)-expressions

- Use one \(\lambda \)-expression as the body of another.
- Allows predicates with several arguments to accept them one by one.

\[
\lambda y. \lambda x. \text{love}(x,y)
\]

‘The function that takes \(y \) to (the function that takes \(x \) to the FOL expression \(\text{love}(x,y) \))’

\[
\lambda z. \lambda y. \lambda x. \text{give}(x,y,z)
\]

‘The function that takes \(z \) to (the function that takes \(y \) to (the function that takes \(x \) to the FOL expression \(\text{give}(x,y,z) \))’

Sharon Goldwater
Meaning representations
Nested λ-reduction

- Starting from binary predicate $\lambda y. \lambda x. \text{love}(x, y)$

- Apply to first argument:

 $\lambda y. \lambda x. \text{love}(x, y)$ (pizza) becomes $\lambda x. \text{love}(x, \text{pizza})$

- Apply to second argument:

 $\lambda x. \text{love}(x, \text{pizza})$ (Marie) becomes love(Marie, pizza)
Summary

• First-order logic can be used as a meaning representation language for natural language.

• λ-expressions can be used to compute meaning representations compositionally.

• Next time, we will see how to use these tools in a syntax-driven approach to semantic analysis.