Meaning representations

Sharon Goldwater
(based on slides by Frank Keller, Bonnie Webber, Mirella Lapata, and others)
13 November 2018

Recap: distributional semantics

- A useful way to represent meanings of individual words
- Can deal with notions of similarity
- But less clear how to deal with compositionality
- Also, we still haven’t discussed how to do inference

Example Question (6)

- Question
 Did Poland reduce its carbon emissions since 1989?
- Text available to the machine
 Due to the collapse of the industrial sector after the end of communism in 1989, all countries in Central Europe saw a fall in carbon emissions.
 Poland is a country in Central Europe.
- What is hard?
 - we need to do inference
 a problem for sentential, not lexical, semantics

Meaning representations

- Vector space is one kind of meaning representation
- But to deal with compositionality and inference, we need meaning representations that are symbolic and structured.
- Next lecture, semantic analysis: how to get from sentences to their meaning representations (using syntax to help).
- But first we need to define the semantics we’re aiming at, i.e., a meaning representation language (MRL).
Basic assumption

The symbols in our meaning representations correspond to objects, properties, and relations *in the world*.

- *The world* may be the real world, or (usually) a formalized and well-specified world: a **model** or knowledge base of known facts.
 - Ex 1: a tiny world model containing 3 entities, and an exhaustive table of 'who loves whom' relations.
 - Ex 2: GeoQuery database [1], containing \(\sim 800 \) facts about US geography.
 - Ex 3: Freebase [2], “A community-curated database of well-known people, places, and things” with over 2.6 billion facts.

What do we want from an MRL?

Compositional: The meaning of a complex expression is a function of the meaning of its parts and of the rules by which they are combined.

Verifiable: Can use the MR of a sentence to determine whether the sentence is true with respect to some given model of the world.

- In Ex 1 above, can establish the truth value of *everybody loves Mary* by checking it against the model.

What do we want from an MRL?

Unambiguous: an MR should have exactly one interpretation. So, an ambiguous sentence should have a different MR for each sense.

- Ex: each interpretation of *I made her duck* or *time flies like an arrow* should have a distinct MR.

- The job of producing all possible MRs for a given sentence will go to the semantic analyzer.

- We also defer the question of choosing which interpretation is correct.
What do we want from an MRL?

Canonical form: sentences with the same (literal) meaning should have the same MR.

- Ex: *I filled the room with balloons* should have the same canonical form as *I put enough balloons in the room to fill it from floor to ceiling*.

- Ex: Similarly, *Tanjore serves vegetarian food* and *Vegetarian dishes are served by Tanjore*.

- Simplifies inference and reduces storage needs; but also makes semantic analysis harder.

Inference: we should be able to verify sentences not only directly, but also by drawing conclusions based on the input MR and facts in the knowledge base.

- Ex: from the MR for a query

 Did Poland reduce its carbon emissions?

- and the MRs for facts

 Carbon emissions have fallen for all countries in Central Europe.

 Poland is a country in Central Europe.

- we should be able to infer the answer: YES.

Expressivity: the MRL should allow us to handle a wide range of meanings and express appropriate relationships between the words in a sentence.

- Ideally, we could express the meaning of any natural language sentence.

- In practice, we may use simpler MRLs that cover a lot of what we want.

- For example...

FOL: First-order Logic (Predicate Logic)

- A pretty good fit to what we’d like.

- Example FOL expressions:

 – tall(Kim) ∨ tall(Pierre)
 – likes(Sam, owner-of(Tanjore))
 – ∃x. cat(x) ∧ owns(Marie,x)
 – ∃x. movie(x) ∧ ∀y. person(y) ⇒ loves(y, x)
FOL: First-order Logic (Predicate Logic)

• Expressions are constructed from terms:
 – constant and variable symbols that represent entities
 – function symbols that allow us to indirectly specify entities
 – predicate symbols that represent properties of entities and relations between entities

• Terms can be combined into predicate-argument structures, which in turn are combined into complex expressions using:
 – Logical connectives: ∨, ∧, ¬, ⇒
 – Quantifiers: ∀ (universal quantifier, i.e., “for all”), ∃ (existential quantifier, i.e. “exists”)

Constants in FOL

• Each constant symbol denotes exactly one entity:
 Scotland, EU, John, 2014

• Not all entities have a constant that denotes them:
 David Cameron’s right knee, this pen

• Several constant symbols may denote the same entity:
 The Evening Star ≡ Venus
 Scotland ≡ Alba

Predicates in FOL

• Predicates with one argument represent properties of entities:
 nation(Scotland), organization(EU), tall(John)

• Predicates with multiple arguments represent relations between entities:
 member-of(UK, EU), likes(John, Marie), introduced(John, Marie, Sue)

• We write “/N” to indicate that a predicate has arity N (takes N arguments)
 member-of/2, nation/1, tall/1, introduced/3
The semantics of predicates

- A predicate of arity N denotes the set of N-tuples that satisfy it.
 - $\text{likes}/2$ is the set of (x, y) pairs for which $\text{likes}(x, y)$ is true.
 - In the following example world, a set of four pairs:
 \[
 \begin{align*}
 \text{likes}(\text{John}, \text{Marie}) & \quad \text{likes}(\text{Marie}, \text{Kim}) & \quad \text{tall}(\text{Kim}) \\
 \text{likes}(\text{John}, \text{Kim}) & \quad \text{eats}(\text{Marie}, \text{pizza}) & \quad \text{nation}(\text{UK}) \\
 \text{likes}(\text{Kim}, \text{UK}) & \quad \text{lives-in}(\text{Marie}, \text{UK}) & \quad \text{nation}(\text{USA})
 \end{align*}
 \]

- If all arguments are instantiated, then the predicate-argument structure has a truth value (determined by comparing it to the set of facts in the world).
 - So, $\text{likes}(\text{John}, \text{Kim})$ is true, whereas $\text{likes}(\text{John}, \text{UK})$ is false.

Functions in FOL

- Like constants, are used to specify (denote) unique entities.
- Unlike constants, they refer to entities indirectly, so we don’t need to store as many constants.
 \[
 \text{president}(\text{EU}), \text{father}(\text{John}), \text{right-knee}(\text{Cameron})
 \]
- Syntactically, they look like unary predicates, but denote entities, not sets.

Logical connectives

- Given FOL expressions P and Q, the meaning of an expression containing P and Q is determined from the meaning of each part and the logical connective.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P$</th>
<th>$P \land Q$</th>
<th>$P \lor Q$</th>
<th>$P \Rightarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>

Ex: $\text{likes}(\text{John, Kim}) \land \text{tall}(\text{John})$ is true iff each predicate is true.

Variables in FOL

- Variable symbols (e.g., x, y, z) range over entities.
- An expression consisting only of a predicate with a variable among its arguments is interpreted as a set:
 \[
 \text{likes}(x, \text{Kim}) \text{ is the set of entities that like Kim.}
 \]
- A predicate with a variable among its arguments only has a truth value if it is bound by a quantifier.
 \[
 \forall x.\text{likes}(x, \text{Kim}) \text{ has an interpretation as either true or false.}
 \]
Universal Quantifier (∀)

- Can be used to express general truths:

 \[\forall x. \text{cat}(x) \Rightarrow \text{mammal}(x) \]

- This MR is true iff the *conjunction* of all similar expressions is true, where each of these *substitutes* a different constant for the variable.

 \[
 (\text{cat}(\text{Sam}) \Rightarrow \text{mammal}(\text{Sam})) \land \\
 (\text{cat}(\text{Zoot}) \Rightarrow \text{mammal}(\text{Zoot})) \land \\
 (\text{cat}(\text{Whiskers}) \Rightarrow \text{mammal}(\text{Whiskers})) \land \\
 (\text{cat}(\text{UK}) \Rightarrow \text{mammal}(\text{UK})) \land \\
 \ldots
 \]

Existential Quantifier (∃)

- Used to express that a property/relation is true of some entity, without specifying which one:

 \[\exists x. \text{cat}(x) \land \text{owns}(\text{Marie}, x) \]

- This MR is true iff the *disjunction* of all similar expressions is true, where each of these *substitutes* a different constant for the variable.

 \[
 (\text{cat}(\text{Sam}) \land \text{owns}(\text{Marie, Sam})) \lor \\
 (\text{cat}(\text{Zoot}) \land \text{owns}(\text{Marie, Zoot})) \lor \\
 (\text{cat}(\text{Whiskers}) \land \text{owns}(\text{Marie, Whiskers})) \lor \\
 (\text{cat}(\text{UK}) \land \text{owns}(\text{Marie, UK})) \lor \\
 \ldots
 \]

Quantifier scoping

- Consider the following sentence:

 Everyone loves some movie

 - No ambiguity in POS tags, syntactic structure, or word senses.
 - But this sentence is still ambiguous!

Existential Quantifier (∃)

- Why use \(\land \) not \(\Rightarrow \)? Notice the difference between these two MRs:

 \[\exists x. \text{cat}(x) \land \text{own}(\text{Marie}, x) \text{ vs } \exists x. \text{cat}(x) \Rightarrow \text{own}(\text{Marie}, x) \]

 In English:

 - There is something that is a cat and Marie owns it vs
 - There is something that if it’s a cat, Marie owns it

- \(P \Rightarrow Q \) is true if the antecedent (left of the \(\Rightarrow \)) is false.

- So the righthand MR is true if there is anything that’s not a cat!

 - If \(\text{cat}(\text{UK}) \) is false, then \(\text{cat}(\text{UK}) \Rightarrow \text{owns}(\text{Marie, UK}) \) is true, and so is \(\exists x. \text{cat}(x) \Rightarrow \text{own}(\text{Marie, x}) \).
Quantifier scoping

- Consider the following sentence:
 Everyone loves some movie
 - No ambiguity in POS tags, syntactic structure, or word senses.
 - But this sentence is still ambiguous!

- Two possible meanings:
 (a) There is a single movie that everyone loves
 (b) Everyone loves at least one movie, but the movies might be different

- This kind of ambiguity is called quantifier scope ambiguity

Are we done?

- MRs in FOL are verifiable, unambiguous, canonical.
- Predicate-argument structure is a good match for natural language
 - Predicate-like elements: verbs, prepositions, adjectives
 - Argument-like elements: nouns, NPs
- Determiners (a, some, every) and coordination (if, and, or) can often be expressed with logical connectives and quantifiers.
- But what about compositionality?

Quantifier scope ambiguity

- The two meanings have different MRs:
 (a) $\exists x. \text{movie}(x) \land \forall y. \text{person}(y) \Rightarrow \text{loves}(y, x)$
 (b) $\forall y. \text{person}(y) \Rightarrow \exists x. \text{movie}(x) \land \text{loves}(y, x)$

- In (a), the ‘\exists’ has scope over the ‘\forall’; in (b) it’s vice versa.

- Other examples of quantifier scope ambiguity:
 A boy gave flowers to each teacher
 Every cat chased a dog

Compositionality

- Suppose we have the following words with the following meanings:

<table>
<thead>
<tr>
<th>word</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marie</td>
<td>Marie</td>
</tr>
<tr>
<td>pizza</td>
<td>pizza</td>
</tr>
<tr>
<td>loves</td>
<td>love(x,y)</td>
</tr>
</tbody>
</table>

- How do we get from there to the meaning of the sentence Marie loves pizza?
Lambda (λ) Expressions

- Extension to FOL, allows us to work with ‘partially constructed’ formulae.

- A λ-expression consists of:
 - the Greek letter λ, followed by a variable (formal parameter);
 - a FOL expression that may involve that variable.

\[\lambda x. \text{sleep}(x) \]

‘The function that takes an entity x to the FOL expression $\text{sleep}(x)$’

- This lambda is the same one used in Python!

λ-Reduction

- A λ-expression can be applied to a term

\[\lambda x. \text{sleep}(x) \text{ (Marie)} \]

This expression can be simplified using λ-reduction: replace the formal parameter with the term and remove the λ. Result:

\[\text{sleep(Marie)} \]

Nested λ-expressions

- Use one λ-expression as the body of another.

- Allows predicates with several arguments to accept them one by one.

\[\lambda y. \lambda x. \text{love}(x,y) \]

‘The function that takes y to (the function that takes x to the FOL expression $\text{love}(x,y)$)’

\[\lambda z. \lambda y. \lambda x. \text{give}(x,y,z) \]

‘The function that takes z to (the function that takes y to (the function that takes x to the FOL expression $\text{give}(x,y,z)$)’

Nested λ-reduction

- Starting from binary predicate $\lambda y. \lambda x. \text{love}(x,y)$

- Apply to first argument:

\[\lambda y. \lambda x. \text{love}(x,y) \text{ (pizza)} \]

becomes $\lambda x. \text{love}(x, \text{pizza})$

- Apply to second argument:

\[\lambda x. \text{love}(x, \text{pizza}) \text{ (Marie)} \]

becomes $\text{love(Marie, pizza)}$
Summary

- First-order logic can be used as a meaning representation language for natural language.

- λ-expressions can be used to compute meaning representations compositionally.

- Next time, we will see how to use these tools in a syntax-driven approach to semantic analysis.