Syntax/Semantics interface
(Semantic analysis)

Sharon Goldwater
(based on slides by James Martin and Johanna Moore)

17 November 2016
Last time

- Discussed properties we want from a meaning representation:
 - compositional
 - verifiable
 - canonical form
 - unambiguous
 - expressive
 - allowing inference

- Argued that first-order logic has all of these except compositionality, and is a good fit for natural language.

- Adding λ-expressions to FOL allows us to compute meaning representations compositionally.
Today

- We’ll see how to use λ-expressions in computing meanings for sentences: syntax-driven semantic analysis.

- But first: a final improvement to event representations
Verbal (event) MRs: the story so far

Syntax:

\[NP \text{ give } NP_1 \text{ } NP_2 \]

Semantics:

\[\lambda z. \lambda y. \lambda x. \text{Giving}_1(x,y,z) \]

Applied to arguments:

\[\lambda z. \lambda y. \lambda x. \text{Giving}_1(x,y,z) \text{ (book)(Mary)(John)} \]

As in the sentence:

John gave Mary a book.

\[\text{Giving}_1(John, \text{ Mary, book}) \]
But what about these?

John gave Mary a book for Susan.

\[\text{Giving}_2(John, \ Mary, \ Book, \ Susan) \]

John gave Mary a book for Susan on Wednesday.

\[\text{Giving}_3(John, \ Mary, \ Book, \ Susan, \ Wednesday) \]

John gave Mary a book for Susan on Wednesday in class.

\[\text{Giving}_4(John, \ Mary, \ Book, \ Susan, \ Wednesday, \ InClass) \]

John gave Mary a book with trepidation.

\[\text{Giving}_5(John, \ Mary, \ Book, \ Susan, \ Trepidation) \]
Problem with event representations

- Predicates in First-order Logic have fixed arity

- Requires separate *Giving* predicate for each syntactic **subcategory** frame (number/type/position of arguments).

- Separate predicates have no logical relation, but they ought to.
 - Ex. if $Giving_3(a, b, c, d, e)$ is true, then so are $Giving_2(a, b, c, d)$ and $Giving_1(a, b, c)$.

- See J&M for various unsuccessful ways to solve this problem; we’ll go straight to a more useful way.
Reification of events

We can solve these problems by **reifying** events.

- Reify: to “make real” or concrete, i.e., give events the same status as entities.
- In practice, introduce variables for events, which we can quantify over.
Reification of events

• We can solve these problems by reifying events.
 – Reify: to “make real” or concrete, i.e., give events the same status as entities.
 – In practice, introduce variables for events, which we can quantify over.

• MR for John gave Mary a book is now

\[\exists e, z. \, Giving(e) \land Giver(e, John) \land Givee(e, Mary) \land \text{Given}(e, z) \land \text{Book}(z) \]

• The giving event is now a single predicate of arity 1: \(Giving(e) \); remaining conjuncts represent the participants (semantic roles).
Entailment relations

• This representation automatically gives us logical entailment relations between events. ("A entails B" means "A ⇒ B").

• John gave Mary a book on Tuesday entails
 John gave Mary a book.
Entailment relations

- This representation automatically gives us logical entailment relations between events. ("A entails B" means "A ⇒ B".)

- John gave Mary a book on Tuesday entails John gave Mary a book. Similarly,

 \[\exists e, z. \hspace{1em} Giving(e) \land Giver(e, John) \land \text{Givee}(e, Mary) \land Given(e, z) \land \text{Book}(z) \land \text{Time}(e, Tuesday) \]

 entails

 \[\exists e, z. \hspace{1em} Giving(e) \land Giver(e, John) \land \text{Givee}(e, Mary) \land Given(e, z) \land \text{Book}(z) \]

- Can add as many semantic roles as needed for the event.
At last: Semantic Analysis

- Given this way of representing meanings, how do we compute meaning representations from sentences?

- The task of **semantic analysis** or **semantic parsing**.

- Most methods rely on a (prior or concurrent) syntactic parse.

- Here: a compositional **rule-to-rule** approach based on FOL augmented with λ-expressions.
Syntax Driven Semantic Analysis

• Based on the **principle of compositionality**.

 – meaning of the whole built up from the meaning of the parts
 – more specifically, in a way that is guided by word ordering and syntactic constituents/relations.

• Build up the MR by augmenting CFG rules with semantic composition rules.

• Representation produced is *literal meaning*: context independent and free of inference

Note: other syntax-driven semantic parsing formalisms exist, e.g. Combinatory Categorial Grammar (Steedman, 2000) has seen a surge in popularity recently.
Example of final analysis

• What we’re hoping to build
CFG Rules with Semantic Attachments

- To compute the final MR, we add semantic attachments to our CFG rules.
- These specify how to compute the MR of the parent from those of its children.
- Rules will look like:

 \[A \rightarrow \alpha_1 \ldots \alpha_n \quad \{ f(\alpha_j.sem, \ldots, \alpha_k.sem) \} \]

- \(A.sem \) (the MR for \(A \)) is computed by applying the function \(f \) to the MRs of some subset of \(A \)'s children.
Proposed rules

• Ex: *AyCaramba serves meat* (with parse tree)

• Rules with semantic attachments for nouns and NPs:

\[
\begin{align*}
\text{ProperNoun} & \rightarrow \text{AyCaramba} \quad \{\text{AyCaramba}\} \\
\text{MassNoun} & \rightarrow \text{meat} \quad \{\text{Meat}\} \\
\text{NP} & \rightarrow \text{ProperNoun} \quad \{\text{ProperNoun.sem}\} \\
\text{NP} & \rightarrow \text{MassNoun} \quad \{\text{MassNoun.sem}\}
\end{align*}
\]

• Unary rules normally just copy the semantics of the child to the parents (as in NP rules here).
What about verbs?

• Before event reification, we had verbs with meanings like:

$$\lambda y. \lambda x. \text{Serving}(x, y)$$

• λs allowed us to compose arguments with predicate.

• We can do the same with reified events:

$$\lambda y. \lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, y)$$
What about verbs?

• Before event reification, we had verbs with meanings like:

\[\lambda y. \lambda x. \text{Serving}(x,y) \]

• \(\lambda s \) allowed us to compose arguments with predicate.

• We can do the same with reified events:

\[\lambda y. \lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, y) \]

• This MR is the semantic attachment of the verb:

\[
\begin{align*}
\text{Verb} & \rightarrow \text{serves} \\
\{ \lambda y. \lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, y) \}
\end{align*}
\]
Building larger constituents

• The remaining rules specify how to apply λ-expressions to their arguments. So, VP rule is:

\[VP \rightarrow \text{Verb} \; \text{NP} \; \{\text{Verb.sem(NP.sem)}\} \]
Building larger constituents

- The remaining rules specify how to apply λ-expressions to their arguments. So, VP rule is:

$$\text{VP} \rightarrow \text{Verb} \quad \text{NP} \quad \{\text{Verb.sem(NP.sem)}\}$$

where $\text{Verb.sem} = \lambda y. \lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, y)$

and $\text{NP.sem} = \text{Meat}$
Building larger constituents

• The remaining rules specify how to apply λ-expressions to their arguments. So, VP rule is:

\[
VP \rightarrow \text{Verb NP} \quad \{ \text{Verb.sem(NP.sem)} \}
\]

\[
\begin{array}{c}
\text{VP} \\
\text{Verb} \downarrow \text{NP} \\
\text{serves} \quad \text{Mass-Noun} \\
\text{meat}
\end{array}
\]

where $\text{Verb.sem} =$

\[
\lambda y. \lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \\
\land \text{Served}(e, y)
\]

and $\text{NP.sem} =$

\[
\text{Meat}
\]

• So, $\text{VP.sem} =$

\[
\lambda y. \lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, y) \ (\text{Meat}) = \\
\lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, \text{Meat})
\]
Finishing the analysis

• Final rule is:

\[
S \rightarrow NP \quad VP \quad \{VP.sem(NP.sem)\}
\]

• now with \(VP.sem = \lambda x. \exists e. Serving(e) \land Server(e, x) \land Served(e, Meat)\)

and \(NP.sem = AyCaramba\)

• So, \(S.sem = \lambda x. \exists e. Serving(e) \land Server(e, x) \land Served(e, Meat) (AyCa.) = \exists e. Serving(e) \land Server(e, AyCaramba) \land Served(e, Meat)\)
Problem with these rules

• Consider the sentence **Every child sleeps**.

\[\forall x. \text{Child}(x) \Rightarrow \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, x) \]

• Meaning of **Every child** (involving \(x\)) is interleaved with meaning of **sleeps**

• As next slides show, our existing rules can’t handle this example, or quantifiers (from NPs with determiners) in general.

• We’ll show the problem, then the solution.
Breaking it down

• **What is the meaning of Every child anyway?**

• **Every child ...**

 ...sleeps \(\forall x. \text{Child}(x) \Rightarrow \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, x) \)

 ...cries \(\forall x. \text{Child}(x) \Rightarrow \exists e. \text{Crying}(e) \land \text{Crier}(e, x) \)

 ...talks \(\forall x. \text{Child}(x) \Rightarrow \exists e. \text{Talking}(e) \land \text{Talker}(e, x) \)

 ...likes pizza \(\forall x. \text{Child}(x) \Rightarrow \exists e. \text{Liking}(e) \land \text{Liker}(e, x) \land \text{Likee}(e, \text{pizza}) \)
Breaking it down

• What is the meaning of Every child anyway?

• Every child ...

 ...sleeps \(\forall x. \ Child(x) \Rightarrow \exists e. \ Sleeping(e) \land Sleeper(e, x) \)
 ...cries \(\forall x. \ Child(x) \Rightarrow \exists e. \ Crying(e) \land Crier(e, x) \)
 ...talks \(\forall x. \ Child(x) \Rightarrow \exists e. \ Talking(e) \land Talker(e, x) \)
 ...likes pizza \(\forall x. \ Child(x) \Rightarrow \exists e. \ Liking(e) \land Liker(e, x) \land Likee(e, pizza) \)

• So it looks like the meaning is something like

\[\forall x. \ Child(x) \Rightarrow Q(x) \]

• where \(Q(x) \) is some (potentially quite complex) expression with a predicate-like meaning
Could this work with our rules?

- We said $S.sem$ should be $VP.sem(NP.sem)$

- but

\[\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y) \left(\forall x. \text{Child}(x) \Rightarrow Q(x) \right) \]

yields

\[\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, \forall x. \text{Child}(x) \Rightarrow Q(x)) \]

- This isn’t a valid FOL: complex expressions cannot be arguments to predicates.
Switching things around

- But if we define $S.sem$ as $NP.sem(VP.sem)$ it works!

- First, must make $NP.sem$ into a functor by adding λ:

 $$\lambda Q \forall x. \ Child(x) \Rightarrow Q(x)$$
Switching things around

• But if we define $S.sem$ as $NP.sem(VP.sem)$ it works!

• First, must make $NP.sem$ into a functor by adding λ:

$$\lambda Q \forall x. \ Child(x) \Rightarrow Q(x)$$

• Then, apply it to $VP.sem$:

$$\lambda Q \forall x. \ Child(x) \Rightarrow Q(x) \ (\lambda y. \ \exists e. \ Sleeping(e) \land Sleeper(e, y))$$

$$\forall x. \ Child(x) \Rightarrow (\lambda y. \ \exists e. \ Sleeping(e) \land Sleeper(e, y)) (x)$$

$$\forall x. \ Child(x) \Rightarrow \exists e. \ Sleeping(e) \land Sleeper(e, x)$$
But, how can we get the right NP.sem?

- We will need a new set of noun rules:

 \[
 \begin{align*}
 \text{Noun} & \rightarrow \text{Child} & \{\lambda x. \text{Child}(x)\} \\
 \text{Det} & \rightarrow \text{Every} & \{\lambda P. \lambda Q. \forall x. P(x) \Rightarrow Q(x)\} \\
 \text{NP} & \rightarrow \text{Det Noun} & \{\text{Det.sem} (\text{Noun.sem})\}
 \end{align*}
 \]
But, how can we get our NP.sem?

• We will need a new set of noun rules:

 Noun → Child \{ \lambda x. \text{Child}(x) \}\n
 Det → Every \{ \lambda P. \lambda Q. \forall x. P(x) \Rightarrow Q(x) \}\n
 NP → Det Noun \{ \text{Det.sem}(\text{Noun.sem}) \}\n
• So, Every child is derived as

\[
\lambda P. \lambda Q. \forall x. P(x) \Rightarrow Q(x) \ (\lambda x. \text{Child}(x))
\]

\[
\lambda Q \forall x. (\lambda x. \text{Child}(x))(x) \Rightarrow Q(x)
\]

\[
\lambda Q \forall x. \text{Child}(x) \Rightarrow Q(x)
\]
One last problem

- Our previous MRs for proper nouns were not functors, so don’t work with our new rule $S \rightarrow \text{NP} \text{ VP} \{NP.sem(\text{VP.sem})\}$.

\[S \]
\[\text{NP} \quad \text{VP} \]
\[\text{ProperNoun} \quad \text{Verb} \]
\[\text{Kate} \quad \text{sleeps} \]

Kate ($\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y)$)
⇒ Not valid!
• Assign a different MR to proper nouns, allowing them to take VPs as arguments:

\[
\text{ProperNoun} \rightarrow \text{Kate} \quad \{\lambda P. P(Kate)\}
\]

• For Kate sleeps, this gives us

\[
\lambda P. P(Kate) \ (\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))
\]

\[
(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))(Kate)
\]

\[
\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, Kate))
\]
\(\lambda \) to the rescue again

- Assign a different MR to proper nouns, allowing them to take VPs as arguments:

 \[
 \text{ProperNoun} \rightarrow \text{Kate} \quad \{\lambda P. \ P(\text{Kate})\}
 \]

- For \text{Kate} sleeps, this gives us

 \[
 \lambda P. \ P(\text{Kate}) \ (\lambda y. \ \exists e. \ \text{Sleeping}(e) \land \text{Sleeper}(e, y)) \]
 \[
 (\lambda y. \ \exists e. \ \text{Sleeping}(e) \land \text{Sleeper}(e, y))(\text{Kate})
 \]
 \[
 \exists e. \ \text{Sleeping}(e) \land \text{Sleeper}(e, \text{Kate})
 \]

- Terminology: we \textbf{type-raised} the the argument \(a \) of a function \(f \), turning it into a function \(g \) that takes \(f \) as argument. (!)

 - The final returned value is the same in either case.
Final grammar?

\[
S \rightarrow NP \ VP \quad \{NP.sem(\text{VP.sem})\}
\]

\[
VP \rightarrow \text{Verb} \quad \{\text{Verb.sem}\}
\]

\[
VP \rightarrow \text{Verb} \ NP \quad \{\text{Verb.sem}(\text{NP.sem})\}
\]

\[
NP \rightarrow \text{Det} \ Noun \quad \{\text{Det.sem}(\text{Noun.sem})\}
\]

\[
NP \rightarrow \text{ProperNoun} \quad \{\text{ProperNoun.sem}\}
\]

\[
\text{Det} \rightarrow \text{Every} \quad \{\lambda P. \lambda Q. \forall x. P(x) \Rightarrow Q(x)\}
\]

\[
\text{Noun} \rightarrow \text{Child} \quad \{\lambda x. \text{Child}(x)\}
\]

\[
\text{ProperNoun} \rightarrow \text{Kate} \quad \{\lambda P. P(\text{Kate})\}
\]

\[
\text{Verb} \rightarrow \text{sleeps} \quad \{\lambda x. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, x)\}
\]

\[
\text{Verb} \rightarrow \text{serves} \quad \{\lambda y. \lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, y)\}
\]
Complications

- This grammar still applies Verbs to NPs when *inside* the VP.

- Try doing this with our new type-raised NPs and you will see it doesn’t work.

- In practice, we need automatic type-raising rules that can be used exactly when needed, otherwise we keep the base type.

 - e.g., “base type” of proper noun is “entity”, not “function from (functions from entities to truth values) to truth values”.
What we did achieve

Developed a grammar with semantic attachments using many ideas now in use:

- existentially quantified variables represent events
- lexical items have function-like λ-expressions as MRs
- non-branching rules copy semantics from child to parent
- branching rules apply semantics of one child to the other(s) using λ-reduction.
Semantic parsing algorithms

- Given a CFG with semantic attachments, how do we obtain the semantic analysis of a sentence?

- One option (integrated): Modify syntactic parser to apply semantic attachments at the time syntactic constituents are constructed.

- Second option (pipelined): Complete the syntactic parse, then walk the tree bottom-up to apply semantic attachments.
Learning a semantic parser

• Much current research focuses on learning semantic grammars rather than hand-engineering them.

• Given sentences paired with meaning representations, e.g.,

Every child sleeps \(\forall x. \ Child(x) \Rightarrow \exists e. \ Sleeping(e) \land Sleeper(e, x) \)

AyCaramba serves meat \(\exists e. \ Serving(e) \land Server(e, AyCaramba) \land Served(e, Meat) \)

• Can we automatically learn

 – Which words are associated with which bits of MR?
 – How those bits combine (in parallel with the syntax) to yield the final MR?

• And, can we do this with less well-specified semantic representations?

See, e.g., Zettlemoyer and Collins (2005); Kwiatkowski et al. (2010); Reddy et al. (2014); Choi et al. (2015)
Summary

• Semantic analysis/semantic parsing: the process of deriving a meaning representation from a sentence.

• Uses the grammar and lexicon (augmented with semantic information) to create context-independent literal meanings

• λ-expressions handle compositionality, building semantics of larger forms from smaller ones.

• Final meaning representations are expressions in first-order logic.
References

