Today

- Closer look at meaning representations
- Syntax-Driven Semantic Analysis

Verbal (event) MRs: the story so far

Syntax:
NP give NP1 NP2

Semantics:
\(\lambda z. \lambda y. \lambda x. \text{Giving}_1(x,y,z) \)

Applied to arguments:
\(\lambda z. \lambda y. \lambda x. \text{Giving}_1(x,y,z)(\text{book})(\text{Mary})(\text{John}) \)

As in the sentence:
John gave Mary a book.
\(\text{Giving}_1(\text{John}, \text{Mary}, \text{book}) \)

But what about these?

John gave Mary a book for Susan.
\(\text{Giving}_2(\text{John}, \text{Mary}, \text{Book}, \text{Susan}) \)

John gave Mary a book for Susan on Wednesday.
\(\text{Giving}_3(\text{John}, \text{Mary}, \text{Book}, \text{Susan}, \text{Wednesday}) \)

John gave Mary a book for Susan on Wednesday in class.
\(\text{Giving}_4(\text{John}, \text{Mary}, \text{Book}, \text{Susan}, \text{Wednesday}, \text{InClass}) \)

John gave Mary a book with trepidation.
\(\text{Giving}_5(\text{John}, \text{Mary}, \text{Book}, \text{Susan}, \text{Trepidation}) \)
Problem with event representations

- Predicates in First-order Logic have fixed arity
- Requires separate *Giving* predicate for each syntactic subcategorisation frame (number/type/position of arguments).
- Separate predicates have no logical relation, but they ought to.
 - Ex. if *Giving₃(a, b, c, d, e)* is true, then so are *Giving₂(a, b, c, d)* and *Giving₁(a, b, c)*.
- See J&M for various unsuccessful ways to solve this problem; we'll go straight to a more useful way.

Reification of events

- We can solve these problems by reifying events.
 - Reify: to “make real” or concrete, i.e., give events the same status as entities.
 - In practice, introduce variables for events, which we can quantify over.

Reification of events

- MR for *John gave Mary a book* is now
 \[\exists e, z. \ Given(e) \land \ Giver(e, John) \land \ Givee(e, Mary) \land \ Given(e, z) \land \ Book(z) \]
- The giving event is now a single predicate of arity 1: *Giving(e)*; remaining conjuncts represent the participants (semantic roles).

Entailment relations

- Our new representation automatically gives us logical entailment relations between events.
- *John gave Mary a book on Tuesday* entails *John gave Mary a book.*
Entailment relations

- Our new representation automatically gives us logical entailment relations between events.

- John gave Mary a book on Tuesday entails John gave Mary a book. Similarly,
 \[\exists e, z. \text{Giving}(e) \land \text{Giver}(e, \text{John}) \land \text{Givee}(e, \text{Mary}) \land \text{Given}(e, z) \land \text{Book}(z) \land \text{Time}(e, \text{Tuesday}) \]
 entails
 \[\exists e, z. \text{Giving}(e) \land \text{Giver}(e, \text{John}) \land \text{Givee}(e, \text{Mary}) \land \text{Given}(e, z) \land \text{Book}(z) \]

- Can add as many semantic roles as needed for the event.

At last: Semantic Analysis

- Given this way of representing meanings, how do we compute meaning representations from sentences?

- The task of semantic analysis or semantic parsing.

- Most methods rely on a (prior or concurrent) syntactic parse.

- Here: a compositional rule-to-rule approach based on FOL augmented with \(\lambda \)-expressions.

Syntax Driven Semantic Analysis

- Based on the principle of compositionality.
 - meaning of the whole built up from the meaning of the parts
 - more specifically, in a way that is guided by word ordering and syntactic constituents/relations.

- Build up the MR by augmenting CFG rules with semantic composition rules.

- Representation produced is literal meaning: context independent and free of inference

Note: other syntax-driven semantic parsing formalisms exist, e.g. Combinatory Categorial Grammar (Steedman, 2000) has seen a surge in popularity recently.

Example of final analysis

- What we’re hoping to build

```
S e \text{Serving}(e) \land \text{Server}(e, \text{AyCaramba}) \land \text{Served}(e, \text{Meat})
```

```
NP Proper-Noun
Verb serves
Mass-Noun meat
```

```
NP
```
CFG Rules with Semantic Attachments

• To compute the final MR, we add semantic attachments to our CFG rules.

• These specify how to compute the MR of the parent from those of its children.

• Rules will look like:

 \[A \rightarrow \alpha_1 \ldots \alpha_n \quad \{ f(\alpha_j\text{.sem}, \ldots, \alpha_k\text{.sem}) \} \]

• \(A\text{.sem} \) (the MR for \(A \)) is computed by applying the function \(f \) to the MRs of some subset of \(A \)'s children.

Proposed rules

• Ex: AyCaramba serves meat (with parse tree)

• Rules with semantic attachments for nouns and NPs:

 ProperNoun → AyCaramba \{AyCaramba\}

 MassNoun → meat \{Meat\}

 NP → ProperNoun \{ProperNoun\sem\}

 NP → MassNoun \{MassNoun\sem\}

• Unary rules normally just copy the semantics of the child to the parents (as in NP rules here).

What about verbs?

• Before event reification, we had verbs with meanings like:

 \[\lambda y. \lambda x. \text{Serving}(x,y) \]

 \(\lambda s \) allowed us to compose arguments with predicate.

 We can do the same with reified events:

 \[\lambda y. \lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, y) \]

• This MR is the semantic attachment of the verb:

 Verb → serves

 \{ \lambda y. \lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, y) \}
Building larger constituents

• The remaining rules specify how to apply \(\lambda \)-expressions to their arguments. So, VP rule is:

\[
\text{VP} \to \text{Verb} \text{ NP} \quad \{ \text{Verb.sem(NP.sem)} \}
\]

\[
\text{VP} \quad \text{Verb} \text{ serves} \quad \text{NP} \quad \text{Mass-Noun} \quad \text{meat} \quad \text{where} \quad \text{Verb.sem} = \lambda y. \lambda x. \exists e. \text{Serving(e)} \land \text{Server(e, x)} \land \text{Served(e, y)}
\]

\[
\text{and} \quad \text{NP.sem} = \text{Meat}
\]

• So, \(\text{VP.sem} = \lambda y. \lambda x. \exists e. \text{Serving(e)} \land \text{Server(e, x)} \land \text{Served(e, y)} \) (Meat) = \lambda x. \exists e. \text{Serving(e)} \land \text{Server(e, x)} \land \text{Served(e, Meat)}

Finishing the analysis

• Final rule is:

\[
\text{S} \to \text{NP} \text{ VP} \quad \{ \text{VP.sem(NP.sem)} \}
\]

\[
\text{now with} \quad \text{VP.sem} = \lambda x. \exists e. \text{Serving(e)} \land \text{Server(e, x)} \land \text{Served(e, Meat)}
\]

\[
\text{and} \quad \text{NP.sem} = \text{AyCaramba}
\]

• So, \(\text{S.sem} = \lambda x. \exists e. \text{Serving(e)} \land \text{Server(e, x)} \land \text{Served(e, Meal)} \) (AyCa.) = \exists e. \text{Serving(e)} \land \text{Server(e, AyCaramba)} \land \text{Served(e, Meal)}
Problem with these rules

- Consider the sentence Every child sleeps.
 \[\forall x. \text{Child}(x) \Rightarrow \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, x) \]
- Meaning of Every child (involving \(x \)) is interleaved with meaning of sleeps
- Our existing rules can’t handle this example, or quantifiers (from NPs with determiners) in general.
- How can we fix things?

Could this work with our rules?

- We said \(S_.sem \) should be \(VP_.sem(NP_.sem) \)
- but
 \[\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y) (\forall x. \text{Child}(x) \Rightarrow Q(x)) \]
yields
 \[\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, \forall x. \text{Child}(x) \Rightarrow Q(x)) \]
- This isn’t a valid FOL: complex expressions cannot be arguments to predicates.

Breaking it down

- What is the meaning of Every child anyway?

- Every child ...
 ...sleeps \[\forall x. \text{Child}(x) \Rightarrow \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, x) \]
 ...cries \[\forall x. \text{Child}(x) \Rightarrow \exists e. \text{Crying}(e) \land \text{Crier}(e, x) \]
 ...talks \[\forall x. \text{Child}(x) \Rightarrow \exists e. \text{Talking}(e) \land \text{Talker}(e, x) \]
 ...likes pizza \[\forall x. \text{Child}(x) \Rightarrow \exists e. \text{Liking}(e) \land \text{Liker}(e, x) \land \text{Likee}(e, \text{pizza}) \]
- So it looks like the meaning is something like
 \[\forall x. \text{Child}(x) \Rightarrow Q(x) \]
- where \(Q(x) \) is some (potentially quite complex) expression with a predicate-like meaning
Switching things around

• But if we define \(S.sem \) as \(NP.sem(VP.sem) \) it works!

• First, must make \(NP.sem \) into a functor by adding \(\lambda \):

\[
\lambda Q \forall x. \text{Child}(x) \Rightarrow Q(x)
\]

But, how can we get our NP.sem?

• We will need a new set of noun rules:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noun (\rightarrow) Child</td>
<td>{(\lambda x. \text{Child}(x))}</td>
</tr>
<tr>
<td>Det (\rightarrow) Every</td>
<td>{(\lambda P. \lambda Q. \forall x. P(x) \Rightarrow Q(x))}</td>
</tr>
<tr>
<td>NP (\rightarrow) Det Noun</td>
<td>{Det.sem(Noun.sem)}</td>
</tr>
</tbody>
</table>

• So, Every child is derived as

\[
\lambda P. \lambda Q. \forall x. P(x) \Rightarrow Q(x) (\lambda x. \text{Child}(x))
\]

\[
\lambda Q \forall x. (\lambda x. \text{Child}(x))(x) \Rightarrow Q(x)
\]

\[
\lambda Q \forall x. \text{Child}(x) \Rightarrow Q(x)
\]

Switching things around

• But if we define \(S.sem \) as \(NP.sem(VP.sem) \) it works!

• First, must make \(NP.sem \) into a functor by adding \(\lambda \):

\[
\lambda Q \forall x. \text{Child}(x) \Rightarrow Q(x)
\]

• Then, apply it to \(VP.sem \):

\[
\lambda Q \forall x. \text{Child}(x) \Rightarrow Q(x) (\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))
\]

\[
\forall x. \text{Child}(x) \Rightarrow (\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))(x)
\]

\[
\forall x. \text{Child}(x) \Rightarrow \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, x)
\]
One last problem

- Our previous MRs for proper nouns were not functors, so don’t work with our new rule
 \[S \rightarrow NP \ VP \ \{NP.sem(VP.sem)\} \].

\[
\begin{array}{ccc}
S & \rightarrow & NP \ VP \\
 & = & \{NP.sem(VP.sem)\} \\
np & \rightarrow & \text{ProperNoun} \\
 & \rightarrow & \text{Verb} \\
 & \rightarrow & \text{Det Noun} \\
 & \rightarrow & \text{ProperNoun} \\
 & \rightarrow & \text{Verb} \\
 & \rightarrow & \text{Serves} \\
\end{array}
\]

\[\lambda P. P(Kate) \] (\(\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y)) \)
\[(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))(Kate) \]
\[\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, Kate) \]

Terminology: we type-raised the the argument \(a\) of a function \(f\), turning it into a function \(g\) that takes \(f\) as argument. (!) The final returned value is the same in either case.

\[(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y)) \]

\[\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, Kate) \]

\[\lambda P. P(Kate) \] (\(\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y)) \)
\[(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))(Kate) \]
\[\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, Kate) \]

\[(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y)) \]

\[\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, Kate) \]

\[\lambda P. P(Kate) \] (\(\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y)) \)
\[(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))(Kate) \]
\[\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, Kate) \]

\[(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y)) \]

\[\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, Kate) \]

\[\lambda P. P(Kate) \] (\(\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y)) \)
\[(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))(Kate) \]
\[\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, Kate) \]

\[(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y)) \]

\[\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, Kate) \]

\[\lambda P. P(Kate) \] (\(\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y)) \)
\[(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))(Kate) \]
\[\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, Kate) \]

\[(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y)) \]

\[\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, Kate) \]

\[\lambda P. P(Kate) \] (\(\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y)) \)
\[(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))(Kate) \]
\[\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, Kate) \]

\[(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y)) \]

\[\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, Kate) \]

\[\lambda P. P(Kate) \] (\(\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y)) \)
\[(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))(Kate) \]
\[\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, Kate) \]

\[(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y)) \]

\[\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, Kate) \]

\[\lambda P. P(Kate) \] (\(\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y)) \)
\[(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))(Kate) \]
\[\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, Kate) \]

\[(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y)) \]

\[\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, Kate) \]

\[\lambda P. P(Kate) \] (\(\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y)) \)
\[(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))(Kate) \]
\[\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, Kate) \]

\[(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))(\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y)) \]

\[\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, Kate) \]
Complications

- This grammar still applies Verbs to NPs when inside the VP.
- Try doing this with our new type-raised NPs and you will see it doesn’t work.
- In practice, we need automatic type-raising rules that can be used exactly when needed, otherwise we keep the base type.
 - e.g., “base type” of proper noun is “entity”, not “function from (functions from entities to truth values) to truth values”.

What we did achieve

Developed a grammar with semantic attachments using many ideas currently in use:

- existentially quantified variables represent events
- lexical items have function-like λ-expressions as MRs
- non-branching rules copy semantics from child to parent
- branching rules apply semantics of one child to the other(s) using λ-reduction.

Compositional semantics: bigger picture

Incorporating semantics into a grammar involves two separate but intertwined processes:

1. Figuring out the right representation for a single constituent based on the parts of that constituent.
2. Figuring out the right representation for a category of constituents based on the grammar rules that use that category.

Semantic parsing algorithms

- Given a CFG with semantic attachments, how do we obtain the semantic analysis of a sentence?
- One option (integrated): Modify syntactic parser to apply semantic attachments at the time syntactic constituents are constructed.
- Second option (pipelined): Complete the syntactic parse, then walk the tree bottom-up to apply semantic attachments.
Learning a semantic parser

- Much current research focuses on learning semantic grammars rather than hand-engineering them.

- Given sentences paired with meaning representations, e.g.,

 Every child sleeps \(\forall x. \text{Child}(x) \Rightarrow \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, x) \)

 AyCaramba serves meat \(\exists e. \text{Serving}(e) \land \text{Server}(e, \text{AyCaramba}) \land \text{Served}(e, \text{Meat}) \)

- Can we automatically learn
 - Which words are associated with which bits of MR?
 - How do those bits combine (in parallel with the syntax) to yield the final MR?

- And, can we do this with less well-specified semantic representations?

Summary

- Semantic analysis/semantic parsing: the process of deriving a meaning representation from a sentence.

- Uses the grammar and lexicon (augmented with semantic information) to create context-independent literal meanings

- \(\lambda \)-expressions handle compositionality, building semantics of larger forms from smaller ones.

- Final meaning representations are expressions in first-order logic.