Last time

- Discussed properties we want from a meaning representation:
 - compositional
 - verifiable
 - canonical form
 - unambiguous
 - expressive
 - allowing inference

- Argued that first-order logic has all of these except compositionality, and is a good fit for natural language.

- Adding λ-expressions to FOL allows us to compute meaning representations compositionally.

Today

- We’ll see how to use λ-expressions in computing meanings for sentences: syntax-driven semantic analysis.

- But first: a final improvement to event representations

Verbal (event) MRs: the story so far

Syntax:

NP give NP$_1$ NP$_2$

Semantics:

λz. λy. λx. Giving$_1$(x,y,z)

Applied to arguments:

λz. λy. λx. Giving$_1$(x,y,z) (book)(Mary)(John)

As in the sentence:

John gave Mary a book.

Giving$_1$(John, Mary, book)
But what about these?

John gave Mary a book for Susan.
\(\text{Giving}_3(\text{John, Mary, Book, Susan}) \)

John gave Mary a book for Susan on Wednesday.
\(\text{Giving}_3(\text{John, Mary, Book, Susan, Wednesday}) \)

John gave Mary a book for Susan on Wednesday in class.
\(\text{Giving}_4(\text{John, Mary, Book, Susan, Wednesday, InClass}) \)

John gave Mary a book with trepidation.
\(\text{Giving}_5(\text{John, Mary, Book, Susan, Trepidation}) \)

Problem with event representations

- Predicates in First-order Logic have fixed arity
- Requires separate \textit{Giving} predicate for each syntactic subcategorisation frame (number/type/position of arguments).
- Separate predicates have no logical relation, but they ought to.
 - Ex. if \(\text{Giving}_3(a, b, c, d, e) \) is true, then so are \(\text{Giving}_2(a, b, c, d) \) and \(\text{Giving}_1(a, b, c) \).
- See J&M for various unsuccessful ways to solve this problem; we’ll go straight to a more useful way.

Reification of events

- We can solve these problems by \textit{reifying} events.
 - Reify: to “make real” or concrete, i.e., give events the same status as entities.
 - In practice, introduce variables for events, which we can quantify over.

MR for \textit{John gave Mary a book} is now
\[\exists e, z. \text{Giving}(e) \land \text{Giver}(e, \text{John}) \land \text{Givee}(e, \text{Mary}) \land \text{Given}(e, z) \land \text{Book}(z) \]

The giving event is now a single predicate of arity 1: \textit{Giving}(e); remaining conjuncts represent the participants (semantic roles).
Entailment relations

• This representation automatically gives us logical entailment relations between events. (“A entails B” means “A ⇒ B”.)

• John gave Mary a book on Tuesday entails
 John gave Mary a book.

Sharon Goldwater ANLP Lecture 23 8

At last: Semantic Analysis

• Given this way of representing meanings, how do we compute meaning representations from sentences?

• The task of semantic analysis or semantic parsing.

• Most methods rely on a (prior or concurrent) syntactic parse.

• Here: a compositional rule-to-rule approach based on FOL augmented with λ-expressions.

Syntax Driven Semantic Analysis

• Based on the principle of compositionality.
 – meaning of the whole built up from the meaning of the parts
 – more specifically, in a way that is guided by word ordering and syntactic constituents/relations.

• Build up the MR by augmenting CFG rules with semantic composition rules.

• Representation produced is literal meaning: context independent and free of inference

Note: other syntax-driven semantic parsing formalisms exist, e.g. Combinatory Categorial Grammar (Steedman, 2000) has seen a surge in popularity recently.
Example of final analysis

- What we’re hoping to build

CFG Rules with Semantic Attachments

- To compute the final MR, we add semantic attachments to our CFG rules.
- These specify how to compute the MR of the parent from those of its children.
- Rules will look like:

\[A \rightarrow \alpha_1 \ldots \alpha_n \{ f(\alpha_j.sem, \ldots, \alpha_k.sem) \} \]

- \(A.sem \) (the MR for \(A \)) is computed by applying the function \(f \) to the MRs of some subset of \(A \)'s children.

Proposed rules

- Ex: AyCaramba serves meat (with parse tree)
- Rules with semantic attachments for nouns and NPs:
 - ProperNoun \(\rightarrow \) AyCaramba \(\{ \text{AyCaramba} \} \)
 - MassNoun \(\rightarrow \) meat \(\{ \text{Meat} \} \)
 - NP \(\rightarrow \) ProperNoun \(\{ \text{ProperNoun.sem} \} \)
 - NP \(\rightarrow \) MassNoun \(\{ \text{MassNoun.sem} \} \)
- Unary rules normally just copy the semantics of the child to the parents (as in NP rules here).

What about verbs?

- Before event reification, we had verbs with meanings like:

\[\lambda y. \lambda x. \text{Serving}(x, y) \]

- \(\lambda s \) allowed us to compose arguments with predicate.
- We can do the same with reified events:

\[\lambda y. \lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, y) \]
What about verbs?

- Before event reification, we had verbs with meanings like:
 \[\lambda y. \lambda x. \text{Serving}(x, y) \]
- \(\lambda s \) allowed us to compose arguments with predicate.
- We can do the same with reified events:
 \[\lambda y. \lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, y) \]
- This MR is the semantic attachment of the verb:
 \[\text{Verb} \rightarrow \text{serves} \{ \lambda y. \lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, y) \} \]

Building larger constituents

- The remaining rules specify how to apply \(\lambda \)-expressions to their arguments. So, VP rule is:
 \[\text{VP} \rightarrow \text{Verb} \ \text{NP} \ \{ \text{Verb.sem(NP.sem)} \} \]

Building larger constituents

- The remaining rules specify how to apply \(\lambda \)-expressions to their arguments. So, VP rule is:
 \[\text{VP} \rightarrow \text{Verb} \ \text{NP} \ \{ \text{Verb.sem(NP.sem)} \} \]

- Where \text{Verb.sem} = \(\lambda y. \lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, y) \) (Meat) = \(\lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, \text{Meat}) \)
Finishing the analysis

- Final rule is:
 \[S \rightarrow NP \quad VP \quad \{ VP.sem(NP.sem) \} \]

- now with \(VP.sem = \lambda x. \exists e. Serving(e) \wedge Server(e, x) \wedge Served(e, Meat) \)

 and \(NP.sem = AyCaramba \)

- So, \(S.sem = \lambda x. \exists e. Serving(e) \wedge Server(e, x) \wedge Served(e, Meat) \) (AyCa.)
 \[= \exists e. Serving(e) \wedge Server(e, AyCaramba) \wedge Served(e, Meat) \]

Problem with these rules

- Consider the sentence Every child sleeps.
 \[\forall x. Child(x) \Rightarrow \exists e. Sleeping(e) \wedge Sleeper(e, x) \]

- Meaning of Every child (involving \(x \)) is interleaved with meaning of sleeps

- Our existing rules can't handle this example, or quantifiers (from NPs with determiners) in general.

- How can we fix things?

Breaking it down

- What is the meaning of Every child anyway?

 Every child ...

 ...sleeps \[\forall x. Child(x) \Rightarrow \exists e. Sleeping(e) \wedge Sleeper(e, x) \]

 ...cries \[\forall x. Child(x) \Rightarrow \exists e. Crying(e) \wedge Crier(e, x) \]

 ...talks \[\forall x. Child(x) \Rightarrow \exists e. Talking(e) \wedge Talker(e, x) \]

 ...likes pizza \[\forall x. Child(x) \Rightarrow \exists e. Liking(e) \wedge Liker(e, x) \wedge Likee(e, pizza) \]

 So it looks like the meaning is something like

 \[\forall x. Child(x) \Rightarrow Q(x) \]

 where \(Q(x) \) is some (potentially quite complex) expression with a predicate-like meaning
Could this work with our rules?

- We said $S.sem$ should be $VP.sem(NP.sem)$

- but
 \[
 \lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y) (\forall x. \text{Child}(x) \Rightarrow Q(x))
 \]

 yields
 \[
 \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, \forall x. \text{Child}(x) \Rightarrow Q(x))
 \]

- This isn’t a valid FOL: complex expressions cannot be arguments to predicates.

Switching things around

- But if we define $S.sem$ as $NP.sem(VP.sem)$ it works!

- First, must make $NP.sem$ into a functor by adding λ:
 \[
 \lambda Q \forall x. \text{Child}(x) \Rightarrow Q(x)
 \]

- Then, apply it to $VP.sem$:
 \[
 \lambda Q \forall x. \text{Child}(x) \Rightarrow Q(x) (\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))
 \]

 \[
 \forall x. \text{Child}(x) \Rightarrow (\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y)) (x)
 \]

 \[
 \forall x. \text{Child}(x) \Rightarrow \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, x)
 \]

But, how can we get our NP.sem?

- We will need a new set of noun rules:

 \[
 \begin{align*}
 \text{Noun} & \rightarrow \text{Child} \{\lambda x. \text{Child}(x)\} \\
 \text{Det} & \rightarrow \text{Every} \{\lambda P. \lambda Q. \forall x. P(x) \Rightarrow Q(x)\} \\
 \text{NP} & \rightarrow \text{Det Noun} \{\text{Det.sem(Noun.sem)}\}
 \end{align*}
 \]
But, how can we get our NP.sem?

- We will need a new set of noun rules:
 \[
 \text{Noun} \to \text{Child} \quad \{\lambda x. \text{Child}(x)\}
 \]
 \[
 \text{Det} \to \text{Every} \quad \{\lambda P. \lambda Q. \forall x. P(x) \Rightarrow Q(x)\}
 \]
 \[
 \text{NP} \to \text{Det} \\text{Noun} \quad \{\text{Det.sem(Noun.sem)}\}
 \]

- So, Every child is derived as
 \[
 \lambda P. \lambda Q. \forall x. P(x) \Rightarrow Q(x) \quad (\lambda x. \text{Child}(x))
 \]
 \[
 \lambda Q \forall x. (\lambda x. \text{Child}(x))(x) \Rightarrow Q(x)
 \]
 \[
 \lambda Q \forall x. \text{Child}(x) \Rightarrow Q(x)
 \]

\[\text{λ to the rescue again}\]

- Assign a different MR to proper nouns, allowing them to take VPs as arguments:
 \[
 \text{ProperNoun} \to \text{Kate} \quad \{\lambda P. P(\text{Kate})\}
 \]

- For Kate sleeps, this gives us
 \[
 \lambda P. P(\text{Kate}) \quad (\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))
 \]
 \[
 (\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y))(\text{Kate})
 \]
 \[
 \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, \text{Kate}))
 \]

One last problem

- Our previous MRs for proper nouns were not functors, so don’t work with our new rule
 \[
 S \to \text{NP} \quad \text{VP} \quad \{\text{NP.sem(VP.sem)}\}
 \]

- Terminology: we \textit{type-raised} the the argument \(a\) of a function \(f\), turning it into a function \(g\) that takes \(f\) as argument. (!)
 - The final returned value is the same in either case.
Complications

- This grammar still applies Verbs to NPs when inside the VP.
- Try doing this with our new type-raised NPs and you will see it doesn’t work.
- In practice, we need automatic type-raising rules that can be used exactly when needed, otherwise we keep the base type.
 - e.g., “base type” of proper noun is “entity”, not “function from (functions from entities to truth values) to truth values”.

What we did achieve

Developed a grammar with semantic attachments using many ideas currently in use:
- existentially quantified variables represent events
- lexical items have function-like λ-expressions as MRs
- non-branching rules copy semantics from child to parent
- branching rules apply semantics of one child to the other(s) using λ-reduction.

Compositional semantics: bigger picture

Incorporating semantics into a grammar involves two separate but intertwined processes:

1. Figuring out the right representation for a single constituent based on the parts of that constituent.
2. Figuring out the right representation for a category of constituents based on the grammar rules that use that category.
Semantic parsing algorithms

• Given a CFG with semantic attachments, how do we obtain the semantic analysis of a sentence?

• One option (integrated): Modify syntactic parser to apply semantic attachments at the time syntactic constituents are constructed.

• Second option (pipelined): Complete the syntactic parse, then walk the tree bottom-up to apply semantic attachments.

Learning a semantic parser

• Much current research focuses on learning semantic grammars rather than hand-engineering them.

• Given sentences paired with meaning representations, e.g.,

 Every child sleeps \(\forall x. \text{Child}(x) \Rightarrow \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, x) \)

 AyCaramba serves meat \(\exists e. \text{Serving}(e) \land \text{Server}(e, \text{AyCaramba}) \land \text{Served}(e, \text{Meat}) \)

• Can we automatically learn
 – Which words are associated with which bits of MR?
 – How do those bits combine (in parallel with the syntax) to yield the final MR?

• And, can we do this with less well-specified semantic representations?

 See, e.g., Zettlemoyer and Collins (2005); Kwiatkowski et al. (2010); Reddy et al. (2014); Choi et al. (2015)

Summary

• Semantic analysis/semantic parsing: the process of deriving a meaning representation from a sentence.

• Uses the grammar and lexicon (augmented with semantic information) to create context-independent literal meanings

• \(\lambda \)-expressions handle compositionality, building semantics of larger forms from smaller ones.

• Final meaning representations are expressions in first-order logic.