Syntax/Semantics interface
(Semantic analysis)

Sharon Goldwater
(based on slides by James Martin and Johanna Moore)
17 November 2016

Last time

• Discussed properties we want from a meaning representation:
 – compositional
 – verifiable
 – canonical form
 – unambiguous
 – expressive
 – allowing inference

• Argued that first-order logic has all of these except compositionality, and is a good fit for natural language.

• Adding λ-expressions to FOL allows us to compute meaning representations compositionally.

Today

• We’ll see how to use λ-expressions in computing meanings for sentences: syntax-driven semantic analysis.

• But first: a final improvement to event representations

Verbal (event) MRs: the story so far

Syntax:
NP give NP_1 NP_2

Semantics:
λz. λy. λx. Giving_1(x,y,z)

Applied to arguments:
λz. λy. λx. Giving_1(x,y,z) (book)(Mary)(John)

As in the sentence:
John gave Mary a book.
Giving_1(John, Mary, book)
But what about these?

John gave Mary a book for Susan.
\(\text{Giving}_2(\text{John, Mary, Book, Susan}) \)

John gave Mary a book for Susan on Wednesday.
\(\text{Giving}_3(\text{John, Mary, Book, Susan, Wednesday}) \)

John gave Mary a book for Susan on Wednesday in class.
\(\text{Giving}_4(\text{John, Mary, Book, Susan, Wednesday, InClass}) \)

John gave Mary a book with trepidation.
\(\text{Giving}_5(\text{John, Mary, Book, Susan, Trepidation}) \)

Problem with event representations

- Predicates in First-order Logic have fixed arity
- Requires separate \textit{Giving} predicate for each syntactic \textit{subcategorisation frame} (number/type/position of arguments).
- Separate predicates have no logical relation, but they ought to.
 - Ex. if \(\text{Giving}_3(a, b, c, d, e) \) is true, then so are \(\text{Giving}_2(a, b, c, d) \) and \(\text{Giving}_1(a, b, c) \).
- See J&M for various unsuccessful ways to solve this problem; we’ll go straight to a more useful way.

Reification of events

- We can solve these problems by \textit{reifying} events.
 - Reify: to “make real” or concrete, i.e., give events the same status as entities.
 - In practice, introduce variables for events, which we can quantify over.

Reification of events

- We can solve these problems by \textit{reifying} events.
 - Reify: to “make real” or concrete, i.e., give events the same status as entities.
 - In practice, introduce variables for events, which we can quantify over.

- MR for \textit{John gave Mary a book} is now

\[
\exists e, z. \text{Giving}(e) \land \text{Giver}(e, \text{John}) \land \text{Givee}(e, \text{Mary}) \land \text{Given}(e, z) \land \text{Book}(z)
\]

- The giving event is now a single predicate of arity 1: \text{Giving}(e); remaining conjuncts represent the participants (semantic roles).
Entailment relations

- This representation automatically gives us logical **entailment** relations between events. (“A entails B” means “A \(\Rightarrow \) B”.)

- John gave Mary a book on Tuesday entails John gave Mary a book.

- \(\exists e, z. \ Given(e) \land Giver(e, John) \land Givee(e, Mary) \land Time(e, Tuesday) \) entails \(\exists e, z. \ Given(e) \land Giver(e, John) \land Givee(e, Mary) \land Book(z) \land Time(e, Tuesday) \)

- Can add as many semantic roles as needed for the event.

Syntax Driven Semantic Analysis

- Based on the principle of compositionality.
 - meaning of the whole built up from the meaning of the parts
 - more specifically, in a way that is guided by word ordering and syntactic constituents/relations.

- Build up the MR by augmenting CFG rules with semantic composition rules.

- Representation produced is **literal meaning**: context independent and free of inference.

Note: other syntax-driven semantic parsing formalisms exist, e.g. Combinatory Categorial Grammar (Steedman, 2000) has seen a surge in popularity recently.
Example of final analysis

• What we’re hoping to build

CFG Rules with Semantic Attachments

• To compute the final MR, we add semantic attachments to our CFG rules.

• These specify how to compute the MR of the parent from those of its children.

• Rules will look like:

\[
A \rightarrow \alpha_1 \ldots \alpha_n \{ f(\alpha_j.sem, \ldots, \alpha_k.sem) \}
\]

• \(A.sem\) (the MR for \(A\)) is computed by applying the function \(f\) to the MRs of some subset of \(A\)’s children.

Proposed rules

• Ex: AyCaramba serves meat (with parse tree)

• Rules with semantic attachments for nouns and NPs:

 ProperNoun → AyCaramba \(\{AyCaramba\}\)
 MassNoun → meat \(\{Meat\}\)
 NP → ProperNoun \(\{ProperNoun.sem\}\)
 NP → MassNoun \(\{MassNoun.sem\}\)

• Unary rules normally just copy the semantics of the child to the parents (as in NP rules here).

What about verbs?

• Before event reification, we had verbs with meanings like:

\[
\lambda y. \lambda x. \text{Serving}(x, y)
\]

• \(\lambda s\) allowed us to compose arguments with predicate.

• We can do the same with reified events:

\[
\lambda y. \lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, y)
\]
What about verbs?

• Before event reification, we had verbs with meanings like:
 \[\lambda y. \lambda x. \text{Serving}(x, y) \]

• \(\lambda s \) allowed us to compose arguments with predicate.

• We can do the same with reified events:
 \[\lambda y. \lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, y) \]

• This MR is the semantic attachment of the verb:
 \[\text{Verb} \rightarrow \text{serves} \{
 \lambda y. \lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, y)
 \} \]

Building larger constituents

• The remaining rules specify how to apply \(\lambda \)-expressions to their arguments. So, VP rule is:
 \[\text{VP} \rightarrow \text{Verb} \ \text{NP} \ \{ \text{Verb.sem(NP.sem)} \} \]

where \(\text{Verb.sem} = \lambda y. \lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, y) \)
and \(\text{NP.sem} = \text{Meat} \)

So, \(\text{VP.sem} = \lambda y. \lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, \text{Meat}) = \lambda x. \exists e. \text{Serving}(e) \land \text{Server}(e, x) \land \text{Served}(e, \text{Meat}) \)
Finishing the analysis

- Final rule is:
 \[S \rightarrow NP \ VP \ (VP.sem(NP.sem)) \]

 • now with \(VP.sem = \)
 \[\lambda x. \exists e. Serving(e) \land Server(e, x) \land Served(e, Meat) \]

 and \(NP.sem = \)
 \[AyCaramba \]

 • So, \(S.sem = \)
 \[\lambda x. \exists e. Serving(e) \land Server(e, x) \land Served(e, Meat) \]

Problem with these rules

- Consider the sentence Every child sleeps.
 \[\forall x. Child(x) \Rightarrow \exists e. Sleeping(e) \land Sleeper(e, x) \]

 • Meaning of Every child (involving \(x \)) is interleaved with meaning of sleeps

- As next slides show, our existing rules can’t handle this example, or quantifiers (from NPs with determiners) in general.

- We’ll show the problem, then the solution.

Breaking it down

- What is the meaning of Every child anyway?

- Every child ...
 - ...sleeps \(\forall x. Child(x) \Rightarrow \exists e. Sleeping(e) \land Sleeper(e, x) \)
 - ...cries \(\forall x. Child(x) \Rightarrow \exists e. Crying(e) \land Crier(e, x) \)
 - ...talks \(\forall x. Child(x) \Rightarrow \exists e. Talking(e) \land Talker(e, x) \)
 - ...likes pizza \(\forall x. Child(x) \Rightarrow \exists e. Liking(e) \land Liker(e, x) \land Likee(e, pizza) \)

- So it looks like the meaning is something like
 \[\forall x. Child(x) \Rightarrow Q(x) \]

- where \(Q(x) \) is some (potentially quite complex) expression with a predicate-like meaning.
Could this work with our rules?

- We said S.sem should be VP.sem(NP.sem)
- but
 \[\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y) \land \forall x. \text{Child}(x) \Rightarrow Q(x) \] yields
 \[\exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, \forall x. \text{Child}(x) \Rightarrow Q(x)) \]
- This isn’t a valid FOL: complex expressions cannot be arguments to predicates.

Switching things around

- But if we define S.sem as NP.sem(VP.sem) it works!
- First, must make NP.sem into a functor by adding λ:
 \[\lambda Q \forall x. \text{Child}(x) \Rightarrow Q(x) \]
- Then, apply it to VP.sem:
 \[\lambda Q \forall x. \text{Child}(x) \Rightarrow Q(x) \land \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y) \] (x)
 \[\forall x. \text{Child}(x) \Rightarrow (\lambda y. \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, y)) (x) \]
 \[\forall x. \text{Child}(x) \Rightarrow \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, x) \]

But, how can we get the right NP.sem?

- We will need a new set of noun rules:

 Noun → **Child** \{ $\lambda x. \text{Child}(x)$ \}

 Det → **Every** \{ $\lambda P. \lambda Q. \forall x. P(x) \Rightarrow Q(x)$ \}

 NP → **Det** **Noun** \{ $\text{Det}.sem($**Noun**.sem) \}

Sharon Goldwater

Semantic analysis

24

25

26

27
But, how can we get our NP.sem?

- We will need a new set of noun rules:

 - Noun → Child \{λx. \text{Child}(x)\}
 - Det → Every \{λP. λQ. ∀x. P(x) ⇒ Q(x)\}
 - NP → Det Noun \{Det.sem(Noun.sem)\}

- So, Every child is derived as

 \[λP. λQ. ∀x. P(x) ⇒ Q(x) (λx. \text{Child}(x))\]

\[λQ ∀x. (λx. \text{Child}(x))(x) ⇒ Q(x)\]

\[λQ ∀x. \text{Child}(x) ⇒ Q(x)\]

Sharon Goldwater Semantic analysis 28

\[\text{λ to the rescue again}\]

- Assign a different MR to proper nouns, allowing them to take VPs as arguments:

 - ProperNoun → Kate \{λP. P(Kate)\}

- For Kate sleeps, this gives us

 \[λP. P(Kate) (λy. ∃e. \text{Sleeping}(e) ∧ \text{Sleeper}(e, y))\]

 \[(λy. ∃e. \text{Sleeping}(e) ∧ \text{Sleeper}(e, y))(Kate)\]

 \[∃e. \text{Sleeping}(e) ∧ \text{Sleeper}(e, Kate)\]

Sharon Goldwater Semantic analysis 29

\[\text{λ to the rescue again}\]

- Assign a different MR to proper nouns, allowing them to take VPs as arguments:

 - ProperNoun → Kate \{λP. P(Kate)\}

- For Kate sleeps, this gives us

 \[λP. P(Kate) (λy. ∃e. \text{Sleeping}(e) ∧ \text{Sleeper}(e, y))\]

 \[(λy. ∃e. \text{Sleeping}(e) ∧ \text{Sleeper}(e, y))(Kate)\]

 \[∃e. \text{Sleeping}(e) ∧ \text{Sleeper}(e, Kate)\]

- Terminology: we type-raised the the argument \(a\) of a function \(f\), turning it into a function \(g\) that takes \(f\) as argument. (!)
 - The final returned value is the same in either case.

Sharon Goldwater Semantic analysis 30

\[\text{λ to the rescue again}\]

- Our previous MRs for proper nouns were not functors, so don’t work with our new rule \(S → NP VP \{NP.sem(VP.sem)\}\).

\[S\]

\[\text{NP} \quad \text{VP} \quad \text{ProperNoun} \quad \text{Verb} \quad \text{Kate} \quad \text{sleeps}\]

\[\text{Kate} (λy. ∃e. \text{Sleeping}(e) ∧ \text{Sleeper}(e, y))\]

⇒ Not valid!

Sharon Goldwater Semantic analysis 31
Final grammar?

\[
\begin{align*}
S & \rightarrow NP \ VP \quad \{NP.sem(VP.sem)\} \\
VP & \rightarrow Verb \quad \{Verb.sem\} \\
VP & \rightarrow Verb \ NP \quad \{Verb.sem(NP.sem)\} \\
NP & \rightarrow Det Noun \quad \{Det.sem(Noun.sem)\} \\
NP & \rightarrow ProperNoun \quad \{ProperNoun.sem\} \\
Det & \rightarrow Every \quad \{\lambda P. \lambda Q. \forall x. P(x) \Rightarrow Q(x)\} \\
Noun & \rightarrow Child \quad \{\lambda x. Child(x)\} \\
ProperNoun & \rightarrow Kate \quad \{\lambda P. P(Kate)\} \\
Verb & \rightarrow sleeps \quad \{\lambda x. \exists e. Sleeping(e) \land Sleeper(e, x)\} \\
Verb & \rightarrow serves \quad \{\lambda y. \lambda x. \exists e. Serving(e) \land Server(e, x) \land Served(e, y)\}
\end{align*}
\]

Complications

- This grammar still applies Verbs to NPs when \textit{inside} the VP.
- Try doing this with our new type-raised NPs and you will see it doesn’t work.
- In practice, we need automatic type-raising rules that can be used exactly when needed, otherwise we keep the base type.
 - e.g., “base type” of proper noun is “entity”, not “function from (functions from entities to truth values) to truth values”.

What we did achieve

Developed a grammar with semantic attachments using many ideas now in use:
- existentially quantified variables represent events
- lexical items have function-like \(\lambda\)-expressions as MRs
- non-branching rules copy semantics from child to parent
- branching rules apply semantics of one child to the other(s) using \(\lambda\)-reduction.

Semantic parsing algorithms

- Given a CFG with semantic attachments, how do we obtain the semantic analysis of a sentence?
- One option (integrated): Modify syntactic parser to apply semantic attachments at the time syntactic constituents are constructed.
- Second option (pipelined): Complete the syntactic parse, then walk the tree bottom-up to apply semantic attachments.
Learning a semantic parser

- Much current research focuses on learning semantic grammars rather than hand-engineering them.

- Given sentences paired with meaning representations, e.g.,

 Every child sleeps: \(\forall x. \text{Child}(x) \Rightarrow \exists e. \text{Sleeping}(e) \land \text{Sleeper}(e, x) \)

 AyCaramba serves meat: \(\exists e. \text{Serving}(e) \land \text{Server}(e, \text{AyCaramba}) \land \text{Served}(e, \text{Meat}) \)

- Can we automatically learn
 - Which words are associated with which bits of MR?
 - How those bits combine (in parallel with the syntax) to yield the final MR?

- And, can we do this with less well-specified semantic representations?

See, e.g., Zettlemoyer and Collins (2005); Kwiatkowski et al. (2010); Reddy et al. (2014); Choi et al. (2015)

Summary

- Semantic analysis/semantic parsing: the process of deriving a meaning representation from a sentence.

- Uses the grammar and lexicon (augmented with semantic information) to create context-independent literal meanings

- \(\lambda \)-expressions handle compositionality, building semantics of larger forms from smaller ones.

- Final meaning representations are expressions in first-order logic.

References

