Meaning representations

Sharon Goldwater
(based on slides by Frank Keller, Bonnie Webber, Mirella Lapata, and others)

15 November 2016
Recap: distributional semantics

- A useful way to represent meanings of individual words
- Can deal with notions of similarity
- But less clear how to deal with compositionality
- Also, we still haven’t discussed how to do inference
Example Question (6)

- **Question**

 Did Poland reduce its carbon emissions since 1989?

- **Text available to the machine**

 Due to the collapse of the industrial sector after the end of communism in 1989, all countries in Central Europe saw a fall in carbon emissions.

 Poland is a country in Central Europe.

- **What is hard?**

 - we need to do inference
 - a problem for sentential, not lexical, semantics
Meaning representations

• Vector space is one kind of meaning representation

• But to deal with compositionality and inference, we need meaning representations that are **symbolic** and **structured**.

• Next lecture, **semantic analysis**: how to get from sentences to their meaning representations (using syntax to help).

• But first we need to define the semantics we’re aiming at, i.e., a **meaning representation language** (MRL).
Basic assumption

The symbols in our meaning representations correspond to objects, properties, and relations in the world.

• The world may be the real world, or (usually) a formalized and well-specified world: a model or knowledge base of known facts.
 – Ex 1: a tiny world model containing 3 entities, and an exhaustive table of ‘who loves whom’ relations.
 – Ex 2: GeoQuery database [1], containing \(\sim 800 \) facts about US geography.
 – Ex 3: Freebase [2], “A community-curated database of well-known people, places, and things” with over 2.6 billion facts.

What do we want from an MRL?

Compositional: The meaning of a complex expression is a function of the meaning of its parts and of the rules by which they are combined.
What do we want from an MRL?

Compositional: The meaning of a complex expression is a function of the meaning of its parts and of the rules by which they are combined.

Verifiable: Can use the MR of a sentence to determine whether the sentence is *true* with respect to some given model of the world.

- In Ex 1 above, can establish the truth value of *everybody loves Mary* by checking it against the model.
What do we want from an MRL?

Unambiguous: an MR should have exactly one interpretation. So, an ambiguous sentence should have a different MR for each sense.

- Ex: each interpretation of *I made her duck or time flies like an arrow* should have a distinct MR.

- The job of producing all possible MRs for a given sentence will go to the semantic analyzer.

- We also defer the question of choosing which interpretation is correct.
What do we want from an MRL?

Canonical form: sentences with the same (literal) meaning should have the same MR.

- Ex: *I filled the room with balloons* should have the same canonical form as *I put enough balloons in the room to fill it from floor to ceiling*.

- Ex: Similarly, *Tanjore serves vegetarian food* and *Vegetarian dishes are served by Tanjore*.

- Simplifies inference and reduces storage needs; but also makes semantic analysis harder.
What do we want from an MRL?

Inference: we should be able to verify sentences not only directly, but also by drawing conclusions based on the input MR and facts in the knowledge base.

- Ex: from the MR for a query

 Did Poland reduce its carbon emissions?

- and the MRs for facts

 Carbon emissions have fallen for all countries in Central Europe.

 Poland is a country in Central Europe.

- we should be able to infer the answer: **YES**.
What do we want from an MRL?

Expressivity: the MRL should allow us to handle a wide range of meanings and express appropriate relationships between the words in a sentence.

- Ideally, we could express the meaning of any natural language sentence.

- In practice, we may use simpler MRLs that cover a lot of what we want.

- Let’s consider an example MRL that *doesn’t* work, followed one that’s much better.
FOL: First-order Logic (Predicate Logic)

- A pretty good fit to what we’d like.

- Example FOL expressions:

 - \(\text{tall}(\text{Kim}) \lor \text{tall}(\text{Pierre}) \)
 - \(\text{likes}(\text{Sam}, \text{owner-of}(\text{Tanjore})) \)
 - \(\exists x. \text{cat}(x) \land \text{owns}(\text{Marie},x) \)
 - \(\exists x. \text{movie}(x) \land \forall y. \text{person}(y) \Rightarrow \text{loves}(y,x) \)
FOL: First-order Logic (Predicate Logic)

- Expressions are constructed from terms:
 - constant and variable symbols that represent entities
 - function symbols that allow us to indirectly specify entities
 - predicate symbols that represent properties of entities and relations between entities
FOL: First-order Logic (Predicate Logic)

• Expressions are constructed from **terms**:
 - **constant and variable symbols** that represent entities
 - **function symbols** that allow us to indirectly specify entities
 - **predicate symbols** that represent properties of entities and relations between entities

• Terms can be combined into **predicate-argument structures**, which in turn are combined into complex expressions using:
 - **Logical connectives**: \(\lor, \land, \neg, \Rightarrow\)
 - **Quantifiers**: \(\forall\) (universal quantifier, i.e., “for all”), \(\exists\) (existential quantifier, i.e. “exists”)
Constants in FOL

• Each constant symbol denotes exactly one entity:
 Scotland, EU, John, 2014

• Not all entities have a constant that denotes them:
 David Cameron’s right knee, this pen

• Several constant symbols may denote the same entity:
 The Evening Star ≡ Venus
 Scotland ≡ Alba
Predicates in FOL

- Predicates with one argument represent properties of entities:
 - nation(Scotland), organization(EU), tall(John)

- Predicates with multiple arguments represent relations between entities:
 - member-of(UK, EU), likes(John, Marie), introduced(John, Marie, Sue)

- We write “/N” to indicate that a predicate has \textit{arity} N (takes \(N \) arguments)
 - member-of/2, nation/1, tall/1, introduced/3
The semantics of predicates

• A predicate of arity N denotes the set of N-tuples that satisfy it.

 – $\text{likes}/2$ is the set of (x, y) pairs for which $\text{likes}(x, y)$ is true.
 – In the following example world, a set of four pairs:

 \begin{align*}
 \text{likes}(\text{John}, \text{Marie}) & \quad \text{likes}(\text{Marie}, \text{Kim}) & \quad \text{tall}(\text{Kim}) \\
 \text{likes}(\text{John}, \text{Kim}) & \quad \text{eats}(\text{Marie}, \text{pizza}) & \quad \text{nation}(\text{UK}) \\
 \text{likes}(\text{Kim}, \text{UK}) & \quad \text{lives-in}(\text{Marie}, \text{UK}) & \quad \text{nation}(\text{USA})
 \end{align*}

• If all arguments are instantiated, then the predicate-argument structure has a truth value (determined by comparing it to the set of facts in the world).

 – So, $\text{likes}(\text{John}, \text{Kim})$ is true, whereas $\text{likes}(\text{John}, \text{UK})$ is false.
Functions in FOL

- Like constants, are used to specify (denote) unique entities.

- Unlike constants, they refer to entities indirectly, so we don’t need to store as many constants.

 president(EU), father(John), right-knee(Cameron)

- Syntactically, they look like unary predicates, but denote entities, not sets.
Logical connectives

- Given FOL expressions P and Q, the meaning of an expression containing P and Q is determined from the meaning of each part and the logical connective.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P$</th>
<th>$P \land Q$</th>
<th>$P \lor Q$</th>
<th>$P \Rightarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>

Ex: $\text{likes(John, Kim)} \land \text{tall(John)}$ is true iff each predicate is true.
Variables in FOL

- Variable symbols (e.g., x, y, z) range over entities.

- An expression consisting only of a predicate with a variable among its arguments is interpreted as a set:

 \[\text{likes}(x, \text{Kim}) \text{ is the set of entities that like Kim.} \]

- A predicate with a variable among its arguments only has a truth value if it is **bound** by a quantifier.

 \[\forall x. \text{likes}(x, \text{Kim}) \text{ has an interpretation as either true or false.} \]
Universal Quantifier (\forall)

- Can be used to express general truths:

 Cats are mammals has MR $\forall x.\text{cat}(x) \Rightarrow \text{mammal}(x)$

- This MR is true iff the conjunction of all similar expressions is true, where each of these substitutes a different constant for the variable.

 cat(Sam) \Rightarrow mammal(Sam) \land
 cat(Zoot) \Rightarrow mammal(Zoot) \land
 cat(Whiskers) \Rightarrow mammal(Whiskers) \land
 cat(UK) \Rightarrow mammal(UK) \land
 ...

Sharon Goldwater Meaning representations 20
Existential Quantifier (∃)

• Used to express that a property/relation is true of some entity, without specifying which one:

 Marie owns a cat has MR $\exists x.\text{cat}(x) \land \text{owns}(\text{Marie}, x)$

• This MR is true iff the disjunction of all similar expressions is true, where each of these substitutes a different constant for the variable.

 $\text{cat}(\text{Sam}) \land \text{owns}(\text{Marie}, \text{Sam}) \lor$
 $\text{cat}(\text{Zoot}) \land \text{owns}(\text{Marie}, \text{Zoot}) \lor$
 $\text{cat}(\text{Whiskers}) \land \text{owns}(\text{Marie}, \text{Whiskers}) \lor$
 $\text{cat}(\text{UK}) \land \text{owns}(\text{Marie}, \text{UK}) \lor$
 \ldots
Existential Quantifier (\exists)

• Why use \land not \Rightarrow? Notice the difference between these two MRs:

$$\exists x.\text{cat}(x) \land \text{own(Marie, x)} \text{ vs } \exists x.\text{cat}(x) \Rightarrow \text{own(Marie, x)}$$

In English:

There is something that is a cat and Marie owns it vs
There is something that if it’s a cat, Marie owns it

• $P \Rightarrow Q$ is true if the antecedent (left of the \Rightarrow) is false.

• So the righthand MR is true if there is anything that’s not a cat!
 - If cat(UK) is false, then $\text{cat(UK)} \Rightarrow \text{own(Marie, UK)}$ is true, and so is $\exists x.\text{cat}(x) \Rightarrow \text{own(Marie, x)}$.

Quantifier scoping

- Consider the following sentence:

 Everyone loves some movie

 - No ambiguity in POS tags, syntactic structure, or word senses.
 - But this sentence is still ambiguous!
Quantifier scoping

• Consider the following sentence:

 Everyone loves some movie

 – No ambiguity in POS tags, syntactic structure, or word senses.
 – But this sentence is still ambiguous!

• Two possible meanings:

 (a) There is a single movie that everyone loves
 (b) Everyone loves at least one movie, but the movies might be different

• This kind of ambiguity is called quantifier scope ambiguity
Quantifier scope ambiguity

• The two meanings have different MRs:

 (a) $\exists x. \text{movie}(x) \land \forall y. \text{person}(y) \Rightarrow \text{loves}(y,x)$

 (b) $\forall y. \text{person}(y) \Rightarrow \exists x. \text{movie}(x) \land \text{loves}(y,x)$

• In (a), the ‘\exists’ has **scope** over the ‘\forall’; in (b) it’s vice versa.

• Other examples of quantifier scope ambiguity:

 A boy gave flowers to each girl
 Every cat chased a dog
Are we done?

- MRs in FOL are verifiable, unambiguous, canonical.

- Predicate-argument structure is a good match for natural language
 - Predicate-like elements: verbs, prepositions, adjectives
 - Argument-like elements: nouns, NPs

- Determiners (a, some, every) and coordination (if, and, or) can often be expressed with logical connectives and quantifiers.

- But what about compositionality?
Suppose we have the following words with the following meanings:

<table>
<thead>
<tr>
<th>word</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marie</td>
<td>Marie</td>
</tr>
<tr>
<td>pizza</td>
<td>pizza</td>
</tr>
<tr>
<td>loves</td>
<td>love(x,y)</td>
</tr>
</tbody>
</table>

How do we get from there to the meaning of the sentence Marie loves pizza?
Lambda (λ) Expressions

- Extension to FOL, allows us to work with ‘partially constructed’ formulae.

- A λ-expression consists of:
 - the Greek letter λ, followed by a variable (formal parameter);
 - a FOL expression that may involve that variable.

$$\lambda x. \text{sleep}(x)$$ ‘The function that takes an entity x to the FOL expression $\text{sleep}(x)$’

- This lambda is the same one used in Python!
\[\lambda\text{-Reduction}\]

- A \(\lambda\)-expression can be applied to a term

\[\lambda x.\text{sleep}(x)(\text{Marie})\]

- This expression can be simplified using \(\lambda\)-reduction: replace the formal parameter with the term and remove the \(\lambda\). Result:

\[\text{sleep}(\text{Marie})\]
Nested λ-expressions

- Use one λ-expression as the body of another.
- Allows predicates with several arguments to accept them one by one.

\[
\lambda y. \lambda x. \text{love}(x,y)
\]

‘The function that takes y to (the function that takes x to the FOL expression \text{love}(x,y))’

\[
\lambda z. \lambda y. \lambda x. \text{give}(x,y,z)
\]

‘The function that takes z to (the function that takes y to (the function that takes x to the FOL expression \text{give}(x,y,z))))’
Nested λ-reduction

- Starting from binary predicate $\lambda y. \lambda x. \text{love}(x,y)$

- Apply to first argument:

 $$\lambda y. \lambda x. \text{love}(x,y) \text{ (pizza)} \text{ becomes } \lambda x. \text{love}(x, \text{pizza})$$

- Apply to second argument:

 $$\lambda x. \text{love}(x, \text{pizza}) \text{ (Marie) becomes love(Marie, pizza)}$$
Summary

• First-order logic can be used as a meaning representation language for natural language.

• λ-expressions can be used to compute meaning representations compositionally.

• Next time, we will see how to use these tools in a syntax-driven approach to semantic analysis.