ANLP Lecture 22
Meaning representations

Sharon Goldwater
(based on slides by Frank Keller, Bonnie Webber, Mirella Lapata, and others)

4 November 2014
Recap: distributional semantics

• A useful way to represent meanings of individual words

• Can deal with notions of similarity

• But less clear how to deal with compositionality

• Also, we still haven’t discussed how to do inference
Example Question (6)

- Question
 Did Poland reduce its carbon emissions since 1989?

- Text available to the machine
 Due to the collapse of the industrial sector after the end of communism in 1989, all countries in Central Europe saw a fall in carbon emissions. Poland is a country in Central Europe.

- What is hard?
 - we need to do inference
 - a problem for sentential, not lexical, semantics
Meaning representations

• Vector space is one kind of meaning representation

• But to deal with compositionality and inference, we need meaning representations that are **symbolic** and **structured**.

• Next lecture: interaction between syntactic and semantic structure (how to get from strings to meaning representations: **semantic analysis**)

• Today: defining a structured semantics, i.e., a **meaning representation language** (MRL).
Basic assumptions

- the symbols in our meaning representations correspond to objects, properties, and relations in the world.

- The world may be the real world, or (more usually) a formalized and well-specified state of affairs: a model or knowledge base of known facts.
 - Ex 1: a tiny world model containing 3 entities, and an exhaustive table of ‘who loves whom’ relations.
 - Ex 2: GeoQuery database [1], containing ∼800 facts about US geography.
 - Ex 3: Freebase [2], “A community-curated database of well-known people, places, and things” with over 2.6 billion facts.

What do we want from an MRL?

Compositional: The meaning of a complex expression is a function of the meaning of its parts and of the rules by which they are combined.
What do we want from an MRL?

Compositional: The meaning of a complex expression is a function of the meaning of its parts and of the rules by which they are combined.

Verifiable: Can use the MR of a sentence to determine whether the sentence is *true* with respect to some given model of the world.

- In Ex 1 above, can establish the truth value of *everybody loves Mary* by checking it against the model.
What do we want from an MRL?

Unambiguous: an MR should have exactly one interpretation. So, an ambiguous sentence should have a different MR for each sense.

- Ex: each interpretation of *I made her duck* or *time flies like an arrow* should have a distinct MR.

- The job of producing all possible MRs for a given sentence will go to the semantic analyzer.

- We also defer the question of choosing which interpretation is correct.
What do we want from an MRL?

Canonical form: sentences with the same (literal) meaning should have the same MR.

- Ex: *I filled the room with balloons* should have the same canonical form as *I put enough balloons in the room to fill it from floor to ceiling.*

- Ex: Similarly, *Tanjore serves vegetarian food* and *Vegetarian dishes are served by Tanjore.*

- Simplifies inference and reduces storage needs; but also makes semantic analysis harder.
What do we want from an MRL?

Inference: we should be able to verify sentences not only directly, but also by drawing conclusions based on the input MR and facts in the knowledge base.

- Ex: from the MR for a query

 Did Poland reduce its carbon emissions?

- and the MRs for facts

 Carbon emissions have fallen for all countries in Central Europe.

 Poland is a country in Central Europe.

- we should be able to infer the answer: **YES**.
What do we want from an MRL?

Expressivity: the MRL should allow us to handle a wide range of meanings and express appropriate relationships between the words in a sentence.

- Ideally, we could express the meaning of any natural language sentence.
- In practice, we may use simpler MRLs that cover a lot of what we want.
- Let’s consider an example MRL that doesn’t work, followed one that’s much better.
Propositional Logic

A very simple language for representation and reasoning in which expressions comprise:

- **atomic sentences** \((P, Q, \text{etc.})\);
 - Ex: use \(P\) to mean *Fred ate lentils* and \(Q\) to mean *Fred ate rice*

- **complex sentences** built up from atomic sentences and logical connectives:
 - \(\land\) (conjunction, i.e., “and”)
 - \(\lor\) (disjunction, i.e., “or”)
 - \(\neg\) (negation, i.e., “not”)
 - \(\rightarrow\) (implication, i.e., “if ... then”)

Sharon Goldwater ANLP Lecture 22 4 November 2014
Problems with propositional logic

- We can’t see “inside” atomic sentences, so we lose the relationships between clauses in the natural language sentences:

 Fred ate lentils or he ate rice. \((P \lor Q)\)
 Fred ate lentils or John ate lentils \((P \lor R)\)

- We can’t express certain ideas.

 Everyone ate lentils. \((P_1 \land P_2 \land P_3 \land P_4 \ldots)\)
 Someone ate lentils. \((P_1 \lor P_2 \lor P_3 \lor P_4 \ldots)\)
Predicate Logic, a.k.a. First-order Logic (FOL)

- A much better fit to NL semantics. Expressions are constructed from terms:
 - **constant and variable symbols** that represent entities
 - **function symbols** that allow us to indirectly specify entities
 - **predicate symbols** that represent properties of entities and relations between entities
Predicate Logic, a.k.a. First-order Logic (FOL)

- A much better fit to NL semantics. Expressions are constructed from terms:
 - constant and variable symbols that represent entities
 - function symbols that allow us to indirectly specify entities
 - predicate symbols that represent properties of entities and relations between entities

- Terms can be combined into predicate-argument structures, which in turn are combined into complex expressions using:
 - Logical connectives: \(\lor, \land, \neg, \Rightarrow\) (as in Propositional Logic)
 - Quantifiers: \(\forall\) (universal quantifier, i.e., “for all”), \(\exists\) (existential quantifier, i.e. “exists”)
Constants in FOL

• Each constant symbol denotes exactly one entity:
 Scotland, EU, John, 2014

• Not all entities have a constant that denotes them:
 David Cameron’s right knee, this pen

• Several constant symbols may denote the same entity:
 The Evening Star \equiv Venus
 Scotland \equiv Alba
Predicates in FOL

- Predicates with one argument represent properties of entities:

 \text{nation}(Scotland), \text{organization}(EU), \text{tall}(John)

- Predicates with multiple arguments represent relations between entities:

 \text{member-of}(UK, EU), \text{likes}(John, Marie), \text{introduced}(John, Marie, Sue)

- We write “/N” to indicate that a predicate has \textbf{arity} N (takes N arguments)

 \text{member-of}/2, \text{nation}/1, \text{tall}/1, \text{introduced}/3
The semantics of predicates

- A predicate with arity N denotes the set of N-tuples that satisfy it.

 \text{member-of}/2 \text{ is the set of } (x, y) \text{ pairs for which member-of}(x, y) \text{ is true.}

- If all arguments are instantiated, then the predicate-argument structure has a truth value (determined by comparing it to the set of facts in the knowledge base).

 \text{member-of}(\text{UK, EU}) \text{ is true, whereas member-of}(\text{US, EU}) \text{ is false.}
Functions in FOL

• Like constants, are used to specify (denote) unique entities.

• Unlike constants, they refer to entities indirectly, so we don’t need to store as many constants.

 \text{president}(\text{EU}), \text{father}(\text{John}), \text{right-knee}(\text{Cameron})

• Syntactically, they look like unary predicates, but denote entities, not sets.
Logical connectives

- Given two FOL expressions P and Q, the meaning of an expression containing P and Q is determined from the meaning of each part and the logical connective.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P$</th>
<th>$P \land Q$</th>
<th>$P \lor Q$</th>
<th>$P \Rightarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>

$\text{member-of(UK, EU)} \land \text{tall(John)}$ is true iff each predicate is true.
Variables in FOL

- Variable symbols (e.g., x, y, z) range over entities.

- An expression consisting only of a predicate with a variable among its arguments is interpreted as a set:

 \[
 \text{member-of}(x, \text{EU}) \text{ is the set of entities that are members of the EU.}
 \]

- A predicate with a variable among its arguments only has a truth value if it is \textit{bound} by a quantifier.

 \[
 \forall x.\text{member-of}(x, \text{EU}) \text{ has an interpretation as either true or false.}
 \]
Universal Quantifier (\(\forall\))

- Can be used to express general truths:

 \[
 \text{Cats are mammals has MR } \forall x. \text{cat}(x) \Rightarrow \text{mammal}(x)
 \]

- This MR is true iff the *conjunction* of *all* similar expressions is true, where each of these *substitutes* a different constant for the variable.

 \[
 \begin{align*}
 \text{cat(sam)} & \Rightarrow \text{mammal(sam)} \land \\
 \text{cat(zoot)} & \Rightarrow \text{mammal(zoot)} \land \\
 \text{cat(whiskers)} & \Rightarrow \text{mammal(whiskers)} \land \\
 \ldots
 \end{align*}
 \]
Existential Quantifier (\exists)

- Used to express that a property/relation is true of some entity, without specifying which one:

 $\text{Marie owns a cat has MR } \exists x. \text{cat}(x) \land \text{owns}(\text{Marie}, x)$

- This MR is true iff the disjunction of all similar expressions is true, where each of these substitutes a different constant for the variable.

 \[
 \text{cat(sam)} \land \text{owns(\text{Marie, sam})} \lor \\
 \text{cat(zoot)} \land \text{owns(\text{Marie, zoot})} \lor \\
 \text{cat(whiskers)} \land \text{owns(\text{Marie, whiskers})} \lor \\
 \ldots
 \]
Existential Quantifier (∃)

- Why use ∧ not ⇒? Notice the difference between these two MRs:
 \[\exists x. \text{cat}(x) \land \text{own}(\text{Marie, } x) \text{ vs } \exists x. \text{cat}(x) \Rightarrow \text{own}(\text{Marie, } x) \]

 In English:

 Marie owns a cat vs There is something that if it’s a cat, Marie owns it

- \(P \Rightarrow Q \) is true if the antecedent (left of the ⇒) is false.

- So the righthand MR is true if (e.g.) there is something that’s a laptop: but Marie owns a cat shouldn’t be true simply for this reason.
Quantifier scoping

- Consider the following sentence:

 Everyone loves some movie

 - No word sense ambiguity
 - No syntactic ambiguity
 - But this sentence is still ambiguous!
Quantifier scoping

• Consider the following sentence:
 Everyone loves some movie
 – No word sense ambiguity
 – No syntactic ambiguity
 – But this sentence is still ambiguous!

• Two possible meanings:
 (a) There is a single movie that everyone loves
 (b) Everyone loves at least one movie, but the movies might be different

• This kind of ambiguity is called **quantifier scope ambiguity**
Quantifier scope ambiguity

• The two meanings have different MRs:

(a) ∃x. movie(x) ∧ ∀y. person(y) ⇒ loves(y,x)
(b) ∀y. person(y) ⇒ ∃x. movie(x) ∧ loves(y,x)

• In (a), the ‘∃’ has scope over the ‘∀’; in (b) it’s vice versa.

• Other examples of quantifier scope ambiguity:

 A boy gave flowers to each girl
 Every cat chased a dog
Are we done?

- MRs in FOL are verifiable, unambiguous, canonical.

- Predicate-argument structure is a good match for natural language
 - Predicate-like elements: verbs, prepositions, adjectives
 - Argument-like elements: nouns, NPs

- Determiners (a, some, every) and coordination (if, and, or) can often be expressed with logical connectives and quantifiers.

- But what about compositionality?
Compositionality

• Suppose we have the following words with the following meanings:

<table>
<thead>
<tr>
<th>word</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marie</td>
<td>Marie</td>
</tr>
<tr>
<td>pizza</td>
<td>pizza</td>
</tr>
<tr>
<td>loves</td>
<td>love(x,y)</td>
</tr>
</tbody>
</table>

• How do we get from there to the meaning of the sentence *Marie loves pizza*?
Lambda (λ) Expressions

• Extension to FOL, allows us to work with ‘partially constructed’ formulae.

• A λ-expression consists of:
 – the Greek letter λ, followed by a variable (formal parameter);
 – a FOL expression that may involve that variable.

\[
\lambda x.\text{sleep}(x)
\]

‘The function that takes an entity x to the FOL expression $\text{sleep}(x)$’
\[\lambda\text{-Reduction}\]

- A \(\lambda\)-expression can be \textbf{applied} to a \textbf{term}

\[
\lambda x. \text{sleep}(x)(\text{Marie})
\]

- This expression can be simplified using \textbf{\(\lambda\)-reduction}: replace the formal parameter with the term and remove the \(\lambda\). Result:

\[
\text{sleep(Marie)}
\]
Nested λ-expressions

- Use one λ-expression as the body of another.
- Allows predicates with multiple arguments to take arguments one by one.

\[\lambda y. \lambda x. love(x, y) \]
‘The function that takes y to (the function that takes x to the FOL expression $love(x, y)$)’

\[\lambda z. \lambda y. \lambda x. give(x, y, z) \]
‘The function that takes z to (the function that takes y to (the function that takes x to the FOL expression $give(x, y, z)$))’
Nested λ-reduction

- Apply to first argument:

 $$\lambda y. \lambda x. \text{love}(x,y) \ (\text{pizza}) \text{ becomes } \lambda x. \text{love}(x, \text{pizza})$$

- Apply to second argument:

 $$\lambda x. \text{love}(x, \text{pizza}) \ (\text{Marie}) \text{ becomes } \text{love}(\text{Marie}, \text{pizza})$$
Summary

• First-order logic can be used as a meaning representation language for natural language.

• \(\lambda\)-expressions can be used to compute meaning representations compositionally.

• Next time, we will see how to use these tools in a syntax-driven approach to semantic analysis.