Can we just use a thesaurus?

- A **thesaurus** is a synonym (and sometimes antonym) dictionary
 - Organised by a hierarchy of meaning classes
 - First, famous, one for English by Roget published in 1852
 - Manuscript page from Roget's original
 - First edition entry for **Existence**: *Ens, entity, being, existence, essence...*
- WordNet is a super-thesaurus in digital form
- The next slide shows paired entries
 - One from the original English version
 - One from a Chinese version

Extract from Open Multilingual Wordnet 1.2 from results of searching for *answer* in English and Chinese (simplified).
Problems with thesauri/Wordnet

Not every language has a thesaurus
Even for the ones that we do have, many words and phrases will be missing
So, let’s try to compute similarity automatically
• Context is the key

Meaning from context(s)

• Consider the example from J&M (quoted from earlier sources):
 a bottle of tezgüino is on the table
everybody likes tezgüino
tezgüino makes you drunk
we make tezgüino out of corn

Distributional hypothesis

• Perhaps we can infer meaning just by looking at the contexts a word occurs in
• Perhaps meaning IS the contexts a word occurs in (!)
• Either way, similar contexts imply similar meanings:
 – This idea is known as the distributional hypothesis

“Distribution”: a polysemous word

• Probability distribution: a function from outcomes to real numbers
• Linguistic distribution: the set of contexts that a particular item (here, word) occurs in
 – Sometimes displayed in Keyword In Context (KWIC) format:
 category error was partly the
 Leg was governor, and the
 But Greg knew he would
 Trent didn’t bother to
 not provide the sort of
 we dismiss (5) with the
 The
 and so he’d always
 doing anything else is one
 answer
to the uncouth question, since
answer
was ”one Leg”, and the
answer
his questions about anyone local
answer.
we want, we can always
answer
"Yes we do"! Regarding
answer
is simple – speed up your
answer
back and say I want
answer
often suggested.

Taken at random from the British National Corpus
Distributional semantics: basic idea

- Represent each word w_i as a vector of its contexts
 - distributional semantic models also called **vector-space models**

- Ex: each dimension is a context word; $= 1$ if it co-occurs with w_i, otherwise 0.

<table>
<thead>
<tr>
<th></th>
<th>pet</th>
<th>bone</th>
<th>fur</th>
<th>run</th>
<th>brown</th>
<th>screen</th>
<th>mouse</th>
<th>fetch</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>w_2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>w_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- Note: real vectors would be far more sparse

Questions to consider

- What defines “context”? (What are the dimensions, what counts as co-occurrence?)
- How to weight the context words (Boolean? counts? other?)
- How to measure similarity between vectors?

Defining the context

- Usually ignore **stopwords** (function words and other very frequent/uninformative words)

- Usually use a large window around the target word (e.g., 100 words, maybe even whole document)

- Can use just cooccurrence within window, or may require more (e.g., dependency relation from parser)

- Note: all of these for **semantic** similarity
 - For **syntactic** similarity, use a small window (1-3 words) and track *only* frequent words

How to weight the context words

- Binary indicators not very informative

- Presumably more frequent co-occurrences matter more

- But, is frequency good enough?
 - Frequent words are expected to have high counts in the context vector
 - Regardless of whether they occur more often with this word than with others
Collocations

• We want to know which words occur unusually often in the context of \(w \): more than we’d expect by chance?

• Put another way, what collocations include \(w \)?

Mutual information

• One way: use pointwise mutual information (PMI):

\[
\text{PMI}(x,y) = \log_2 \frac{P(x,y)}{P(x)P(y)}
\]

\(P(x,y) \) = Observed probability of seeing words \(x \) and \(y \) together
\(P(x)P(y) \) = Predicted probability of same, if \(x \) and \(y \) are independent

• PMI tells us how much more/less likely the cooccurrence is than if the words were independent

\(= 0 \) independent as predicted
\(> 0 \) friends occur together more than predicted
\(< 0 \) enemies occur together less than predicted

A problem with PMI

• In practice, PMI is computed with counts (using MLE)

• Result: it is over-sensitive to the chance co-occurrence of infrequent words

• See next slide: ex. PMIs from bigrams with 1 count in 1st 1000 documents of NY Times corpus

− About 633,000 words, compared to 14,310,000 in the whole corpus

Example PMIs (Manning & Schütze, 1999, p181)

<table>
<thead>
<tr>
<th>(I_{1000})</th>
<th>(w^1)</th>
<th>(w^2)</th>
<th>(w^1w^2)</th>
<th>Bigram</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.95</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>Schwartz eschews</td>
</tr>
<tr>
<td>15.02</td>
<td>1</td>
<td>19</td>
<td>1</td>
<td>fewest visits</td>
</tr>
<tr>
<td>13.78</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>FIND GARDEN</td>
</tr>
<tr>
<td>12.00</td>
<td>5</td>
<td>31</td>
<td>1</td>
<td>Indonesian pieces</td>
</tr>
<tr>
<td>9.82</td>
<td>26</td>
<td>27</td>
<td>1</td>
<td>Reds garden</td>
</tr>
<tr>
<td>9.21</td>
<td>13</td>
<td>82</td>
<td>1</td>
<td>marijuana growing</td>
</tr>
<tr>
<td>7.37</td>
<td>24</td>
<td>159</td>
<td>1</td>
<td>doubt whether</td>
</tr>
<tr>
<td>6.68</td>
<td>687</td>
<td>9</td>
<td>1</td>
<td>new converts</td>
</tr>
<tr>
<td>6.00</td>
<td>661</td>
<td>15</td>
<td>1</td>
<td>like offensive</td>
</tr>
<tr>
<td>3.81</td>
<td>159</td>
<td>283</td>
<td>1</td>
<td>must think</td>
</tr>
</tbody>
</table>

These values are are 2–4 binary orders of magnitude higher than the corresponding estimates based on the whole corpus
Alternatives to PMI for finding collocations

- There are a lot, all ways of measuring statistical (in)dependence
 - Student t-test
 - Pearson’s χ^2 statistic
 - Dice coefficient
 - likelihood ratio test (Dunning, 1993)
 - Lin association measure (Lin, 1998)
 - and many more...

- Of those listed here, the Dunning LR test is probably the most reliable for low counts
- However, which works best may depend on particular application/evaluation

How to measure similarity

- So, let’s assume we have context vectors for two words \vec{v} and \vec{w}
- Each contains PMI (or PPMI) values for all context words
- One way to think of these vectors: as points in high-dimensional space
 - That is, we embed words in this space
 - So the vectors are also called word embeddings

Improving PMI

Rather than using a different method, PMI itself can be modified to better handle low frequencies

- Use positive PMI (PPMI): change all negative PMI values to 0
 - Because for infrequent words, not enough data to accurately determine negative PMI values
- Introduce smoothing in PMI computation
 - See J&M (3rd ed.) Ch 6.7 for a particularly effective method discussed by Levy, Goldberg and Dagan 2015

Vector space representation

- Example, in 2-dimensional space: $\text{cat} = (v_1, v_2)$, $\text{computer} = (w_1, w_2)$
Euclidean distance

• We could measure (dis)similarity using Euclidean distance:
 \[(\sum_i (v_i - w_i)^2)^{1/2} \]

• But doesn’t work well if even one dimension has an extreme value

Dot product

• Another possibility: take the dot product of \(\vec{v} \) and \(\vec{w} \):
 \[\text{sim}_{DP}(\vec{v}, \vec{w}) = \vec{v} \cdot \vec{w} = \sum_i v_i w_i \]

 – Gives a large value if there are many cases where \(v_i \) and \(w_i \) are both large: vectors have similar counts for context words

Normalized dot product

• Some vectors are longer than others (have higher values):
 \[[5, 2.3, 0, 0.2, 2.1] \text{ vs. } [0.1, 0.3, 1, 0.4, 0.1] \]
 – If vector is context word counts, these will be frequent words
 – If vector is PMI values, these are likely to be infrequent words

• Dot product is generally larger for longer vectors, regardless of similarity

 • To correct for this, we normalize: divide by the length of each vector:
 \[\text{sim}_{NDP}(\vec{v}, \vec{w}) = (\vec{v} \cdot \vec{w}) / (|\vec{v}| |\vec{w}|) \]
Normalized dot product $= \cosine$

- The normalized dot product is just the cosine of the angle between vectors.

 ![Diagram showing normalized dot product](image)

- Ranges from -1 (vectors pointing opposite directions) to 1 (same direction).

Other similarity measures

- Again, many alternatives
 - Jaccard measure
 - Dice measure
 - Jenson-Shannon divergence
 - etc.

- Again, may depend on particular application/evaluation.

Evaluation

- Extrinsic may involve IR, QA, automatic essay marking, ...

- Intrinsic is often a comparison to psycholinguistic data
 - Relatedness judgments
 - Word association

Relatedness judgments

- Participants are asked, e.g.: on a scale of 1-10, how related are the following concepts?

 LEMON FLOWER

- Usually given some examples initially to set the scale, e.g.
 - LEMON-TRUTH $= 1$
 - LEMON-ORANGE $= 10$

- But still a funny task, and answers depend a lot on how the question is asked (‘related’ vs. ‘similar’ vs. other terms).
Word association

- Participants see/hear a word, say the first word that comes to mind
- Data collected from lots of people provides probabilities of each answer:

<table>
<thead>
<tr>
<th>Word</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORANGE</td>
<td>0.16</td>
</tr>
<tr>
<td>SOUR</td>
<td>0.11</td>
</tr>
<tr>
<td>TREE</td>
<td>0.09</td>
</tr>
<tr>
<td>YELLOW</td>
<td>0.08</td>
</tr>
<tr>
<td>TEA</td>
<td>0.07</td>
</tr>
<tr>
<td>JUICE</td>
<td>0.05</td>
</tr>
<tr>
<td>PEEL</td>
<td>0.04</td>
</tr>
<tr>
<td>BITTER</td>
<td>0.03</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Example data from the Edinburgh Associative Thesaurus: http://www.eat.rl.ac.uk/

Comparing to human data

- Human judgments provide a ranked list of related words/associations for each word w
- Computer system provides a ranked list of most similar words to w
- Compute the Spearman rank correlation between the lists (how well do the rankings match?)
- Often report on several data sets, as their details differ

Learning a more compact space

- So far, our vectors have length V, the size of the vocabulary
- Do we really need this many dimensions?
- Can we represent words in a smaller dimensional space that preserves the similarity relationships of the larger space?

We’ll talk about these ideas next week