ANLP Lecture 21
Distributional Semantics

Sharon Goldwater

31 October 2017
Example Question (5)

• Question

 What is a good way to remove wine stains?

• Text available to the machine

 Salt is a great way to eliminate wine stains

• What is hard?

 – words may be related in other ways, including similarity and gradation

 – how to know if words have similar meanings?
Can we just use a thesaurus?

Problems:

- May not have a thesaurus in every language
- Even if we do, many words and phrases will be missing

So, let’s try to compute similarity automatically.
Meaning from context(s)

• Consider the example from J&M (quoted from earlier sources):

 a bottle of *tezgüino* is on the table
 everybody likes *tezgüino*
 tezgüino makes you drunk
 we make *tezgüino* out of corn
Distributional hypothesis

- perhaps we can infer meaning just by looking at the contexts a word occurs in

- perhaps meaning IS the contexts a word occurs in (!)

- either way, similar contexts imply similar meanings:
 - this idea is known as the distributional hypothesis
“Distribution”: a polysemous word

- Probability distribution: a function from outcomes to real numbers

- Linguistic distribution: the set of contexts that a particular item (here, word) occurs in
Distributional semantics: basic idea

- Represent each word w_i as a vector of its contexts
 - distributional semantic models also called vector-space models.

- Ex: each dimension is a context word; = 1 if it co-occurs with w_i, otherwise 0.

<table>
<thead>
<tr>
<th></th>
<th>pet</th>
<th>bone</th>
<th>fur</th>
<th>run</th>
<th>brown</th>
<th>screen</th>
<th>mouse</th>
<th>fetch</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>w_2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>w_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- Note: real vectors would be far more sparse
Questions to consider

- What defines “context”? (What are the dimensions, what counts as co-occurrence?)

- How to weight the context words (Boolean? counts? other?)

- How to measure similarity between vectors?
Defining the context

- Usually ignore stopwords (function words and other very frequent/uninformative words)

- Usually use a large window around the target word (e.g., 100 words, maybe even whole document)

- Can use just cooccurrence within window, or may require more (e.g., dependency relation from parser)

- Note: all of these for semantic similarity; for syntactic similarity, use a small window (1-3 words) and track only frequent words.
How to weight the context words

• binary indicators not very informative

• presumably more frequent co-occurrences matter more

• but, is frequency good enough?
 – frequent words are expected to have high counts in the context vector
 – regardless of whether they occur more often with this word than with others
Collocations

• We want to know which words occur *unusually* often in the context of \(w \): more than we’d expect by chance?

• Put another way, what *collocations* include \(w \)?
Mutual information

- One way: use pointwise mutual information:

$$\text{PMI}(x, y) = \log_2 \frac{P(x, y)}{P(x)P(y)} \iff \text{Actual prob of seeing words } x \text{ and } y \text{ together}$$
$$\iff \text{Predicted prob of same, if } x \text{ and } y \text{ are indep.}$$

- PMI tells us how much more/less likely the cooccurrence is than if the words were independent
A problem with PMI

- In practice, PMI is computed with counts (using MLE).

- Result: it is over-sensitive to the chance co-occurrence of infrequent words

- See next slide: ex. PMIs from bigrams with 1 count in 1st 1000 documents of NY Times corpus
Example PMIs (Manning & Schütze, 1999, p181)

<table>
<thead>
<tr>
<th>I_{1000}</th>
<th>w^1</th>
<th>w^2</th>
<th>w^1w^2</th>
<th>Bigram</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.95</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>Schwartz eschews</td>
</tr>
<tr>
<td>15.02</td>
<td>1</td>
<td>19</td>
<td>1</td>
<td>fewest visits</td>
</tr>
<tr>
<td>13.78</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>FIND GARDEN</td>
</tr>
<tr>
<td>12.00</td>
<td>5</td>
<td>31</td>
<td>1</td>
<td>Indonesian pieces</td>
</tr>
<tr>
<td>9.82</td>
<td>26</td>
<td>27</td>
<td>1</td>
<td>Reds survived</td>
</tr>
<tr>
<td>9.21</td>
<td>13</td>
<td>82</td>
<td>1</td>
<td>marijuana growing</td>
</tr>
<tr>
<td>7.37</td>
<td>24</td>
<td>159</td>
<td>1</td>
<td>doubt whether</td>
</tr>
<tr>
<td>6.68</td>
<td>687</td>
<td>9</td>
<td>1</td>
<td>new converts</td>
</tr>
<tr>
<td>6.00</td>
<td>661</td>
<td>15</td>
<td>1</td>
<td>like offensive</td>
</tr>
<tr>
<td>3.81</td>
<td>159</td>
<td>283</td>
<td>1</td>
<td>must think</td>
</tr>
</tbody>
</table>
Alternatives to PMI for finding collocations

- There are a lot, all ways of measuring statistical (in)dependence.
 - Student t-test
 - Pearson’s χ^2 statistic
 - Dice coefficient
 - likelihood ratio test (Dunning, 1993)
 - Lin association measure (Lin, 1998)
 - and many more...

- Of those listed here, Dunning LR test probably most reliable for low counts.

- However, which works best may depend on particular application/evaluation.
Improving PMI

Rather than using a different method, can modify PMI itself to better handle low frequencies.

- Use **positive PMI** (PPMI): change all negative PMI values to 0.
 - Because for infrequent words, not enough data to accurately determine negative PMI values.

- Introduce smoothing in PMI computation.
 - See JM3 for a particularly effective method discussed by Levy et al. (2015)
How to measure similarity

- So, let’s assume we have context vectors for two words \vec{v} and \vec{w}

- Each contains PMI (or PPMI) values for all context words

- One way to think of these vectors: as points in high-dimensional space
 - That is, we embed words in this space.
 - So the vectors are also called word embeddings.
Vector space representation

- Ex. in 2-dim space: $\text{cat} = (v_1, v_2)$, $\text{computer} = (w_1, w_2)$
Euclidean distance

- We could measure (dis)similarity using Euclidean distance: \((\sum_i (v_i - w_i)^2)^{1/2} \)

- But doesn't work well if even one dimension has an extreme value
Dot product

- Another possibility: take the dot product of \vec{v} and \vec{w}:

$$\text{sim}_{DP}(\vec{v}, \vec{w}) = \vec{v} \cdot \vec{w} = \sum_i v_i w_i$$

- Gives a large value if there are many cases where v_i and w_i are both large: vectors have similar counts for context words.
Normalized dot product

- Some vectors are longer than others (have higher values):

\[[5, 2.3, 0, 0.2, 2.1] \quad \text{vs.} \quad [0.1, 0.3, 1, 0.4, 0.1] \]

- If vector is context word counts, these will be \textit{frequent} words
- If vector is PMI values, these are likely to be \textit{infrequent} words

- Dot product is generally larger for longer vectors, regardless of similarity
Normalized dot product

- Some vectors are longer than others (have higher values):
 \[
 [5, 2.3, 0, 0.2, 2.1] \quad \text{vs.} \quad [0.1, 0.3, 1, 0.4, 0.1]
 \]
 - If vector is context word counts, these will be *frequent* words
 - If vector is PMI values, these are likely to be *infrequent* words

- Dot product is generally larger for longer vectors, regardless of similarity

- To correct for this, we **normalize**: divide by the length of each vector:
 \[
 \text{sim}_{\text{NDP}}(\vec{v}, \vec{w}) = \left(\vec{v} \cdot \vec{w} \right) / (|\vec{v}| |\vec{w}|)
 \]
Normalized dot product = cosine

- The normalized dot product is just the cosine of the angle between vectors.

- Ranges from -1 (vectors pointing opposite directions) to 1 (same direction)
Other similarity measures

- Again, many alternatives
 - Jaccard measure
 - Dice measure
 - Jenson-Shannon divergence
 - etc.

- Again, may depend on particular application/evaluation
Evaluation

- Extrinsic may involve IR, QA, automatic essay marking, ...

- Intrinsic is often a comparison to psycholinguistic data
 - Relatedness judgments
 - Word association
Relatedness judgments

• Participants are asked, e.g.: on a scale of 1-10, how related are the following concepts?

 LEMON FLOWER

• Usually given some examples initially to set the scale, e.g.

 – LEMON-TRUTH = 1
 – LEMON-ORANGE = 10

• But still a funny task, and answers depend a lot on how the question is asked (‘related’ vs. ‘similar’ vs. other terms)
Word association

- Participants see/hear a word, say the first word that comes to mind

- Data collected from lots of people provides probabilities of each answer:

<table>
<thead>
<tr>
<th>Word</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEMON</td>
<td></td>
</tr>
</tbody>
</table>

ORANGE	0.16
SOUR	0.11
TREE	0.09
YELLOW	0.08
TEA	0.07
JUICE	0.05
...	

Example data from the Edinburgh Associative Thesaurus: http://www.eat.rl.ac.uk/
Comparing to human data

- Human judgments provide a ranked list of related words/associations for each word \(w \)

- Computer system provides a ranked list of most similar words to \(w \)

- Compute the Spearman rank correlation between the lists (how well do the rankings match?)

- Often report on several data sets, as their details differ
Learning a more compact space

- So far, our vectors have length V, the size of the vocabulary
- Do we really need this many dimensions?
- Can we represent words in a smaller dimensional space that preserves the similarity relationships of the larger space?
Learning a more compact space

- So far, our vectors have length V, the size of the vocabulary
- Do we really need this many dimensions?
- Can we represent words in a smaller dimensional space that preserves the similarity relationships of the larger space?

We’ll talk about these ideas next week.

- Next class: Federico Fancellu on Edinburgh’s entry to the Alexa Challenge.
References