This course divides roughly into three parts:

1. Words and sequences
2. Syntactic structure
3. Meaning (of words, sentences, and discourse)

Today we start part 3.

(We also have a bit more to say about some things from parts 1 and 2, will intersperse these topics.)
Meaning

• The grand goal of artificial intelligence
 – machines that do not mindlessly process data
 – ... but that ultimately understand its meaning

• But how do we know if we succeeded?
Eliza

A famous computer program from 1969 shows people can be easily fooled into thinking that machines have some deep understanding.

young woman: Men are all alike.
eliza: In what way?
young woman: They’re always bugging us about something specific or other.
eliza: Can you think of a specific example?
young woman: Well, my boyfriend made me come here.
eliza: Your boyfriend made you come here?
young woman: He says I’m depressed much of the time.
eliza: I am sorry to hear you are depressed.
young woman: It’s true. I’m unhappy.
eliza: Do you think coming here will help you not to be unhappy?

What is meaning? What is understanding?

• These are deep philosophical questions

• NLP usually takes a more pragmatic view: can the computer behave as though it understands (in order to do what we want)?
 – Dialogue systems (e.g., Eliza)
 – Machine translation
 – Question answering

• What issues will we face in building such systems?
A Concrete Goal

• We would like to build
 – a machine that answers questions in natural language.
 – may have access to knowledge bases
 – may have access to vast quantities of English text

• Basically, a smarter Google

• This is typically called Question Answering
Semantics

• To build our QA system we will need to deal with issues in **semantics**, i.e., meaning.

• Lexical semantics: the meanings of individual words (next few lectures)

• Sentential semantics: how word meanings combine (after that)

• Consider some examples to highlight problems in lexical semantics
Example Question

• Question
 When was Barack Obama born?

• Text available to the machine
 Barack Obama was born on August 4, 1961

• This is easy.
 – just phrase a Google query properly:
 "Barack Obama was born on *"
 – syntactic rules that convert questions into statements are straight-forward
Example Question (2)

• Question

 What plants are native to Scotland?

• Text available to the machine

 A new chemical plant was opened in Scotland.

• What is hard?

 – words may have different meanings (senses)
 – we need to be able to disambiguate between them
Example Question (3)

• Question
 Where did Theresa May go on vacation?

• Text available to the machine
 Theresa May spent her holiday in Cornwall

• What is hard?
 – words may have the same meaning (synonyms)
 – we need to be able to match them
Example Question (4)

• Question
 Which animals love to swim?

• Text available to the machine
 Polar bears love to swim in the freezing waters of the Arctic.

• What is hard?
 – words can refer to a subset (**hyponym**) or superset (**hypernym**) of the concept referred to by another word
 – we need to have database of such **A is-a B** relationships, called an **ontology**
Question

What is a good way to remove wine stains?

Text available to the machine

Salt is a great way to eliminate wine stains

What is hard?

- words may be related in other ways, including similarity and gradation
- we need to be able to recognize these to give appropriate responses
Example Question (6)

- **Question**

 Did Poland reduce its carbon emissions since 1989?

- **Text available to the machine**

 Due to the collapse of the industrial sector after the end of communism in 1989, all countries in Central Europe saw a fall in carbon emissions.

 Poland is a country in Central Europe.

- **What is hard?**

 - we need to do inference

 - a problem for sentential, not lexical, semantics
Some of these problems can be solved with a good ontology.

WordNet (for English: see http://wordnet.princeton.edu/) is a hand-built ontology containing 117,000 **synsets**: sets of synonymous words.

Synsets are connected by relations such as

- hyponym/hypernym (IS-A: chair-furniture)
- meronym (PART-WHOLE: leg-chair)
- antonym (OPPOSITES: good-bad)

globalwordnet.org now lists wordnets in over 50 languages (but variable size/quality/licensing)
Word Sense Ambiguity

• Not all problems can be solved by WordNet alone.

• Two completely different words can be spelled the same (homonyms):

 I put my money in the bank. vs. He rested at the bank of the river.
 You can do it! vs. She bought a can of soda.

• More generally, words can have multiple (related or unrelated) senses (polysemes)

• Polysemous words often fall into (semi-)predictable patterns: see next slides (from Hugh Rabagliati in PPLS).
<table>
<thead>
<tr>
<th>Pattern</th>
<th>Participating Senses</th>
<th>Example Sentences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal for fur</td>
<td>Mink, chinchilla, rabbit, beaver, raccoon*, alpaca*, crocodile*</td>
<td>The mink drank some water / She likes to wear mink</td>
</tr>
<tr>
<td>Animal/Object for personality</td>
<td>Chicken, sheep, pig, snake, star*, rat*, doll*</td>
<td>The chicken drank some water / He is a chicken</td>
</tr>
<tr>
<td>Animal for meat</td>
<td>Chicken, lamb, fish, shrimp, salmon*, rabbit*, lobster*</td>
<td>The chicken drank some water / The chicken is tasty</td>
</tr>
<tr>
<td>Artifact for activity</td>
<td>Shower, bath, sauna, baseball,</td>
<td>The shower was leaking / The shower was relaxing</td>
</tr>
<tr>
<td>Body part for object part</td>
<td>Arm, leg, hand, face, back*, head*, foot*, shoulder*, lip*</td>
<td>John’s arm was tired / The arm was reupholstered</td>
</tr>
<tr>
<td>Building for people</td>
<td>Church, factory, school, airplane,</td>
<td>The church was built 20 years ago / The church sang a song</td>
</tr>
<tr>
<td>Complement Coercion</td>
<td>Begin, start, finish, try</td>
<td>John began reading the book / John began the book</td>
</tr>
<tr>
<td>Container for contents</td>
<td>Bottle, can, pot, pan, bowl*, plate*, box*, bucket*</td>
<td>The bottle is made of steel / He drank half of the bottle</td>
</tr>
<tr>
<td>Word for question</td>
<td>Price, weight, speed</td>
<td>The price of the coffee was low / John asked the price of the coffee</td>
</tr>
<tr>
<td>Pattern</td>
<td>Participating Senses</td>
<td>Example Sentences</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Figure for Ground</td>
<td>Window, door, gate, goal</td>
<td>The window is broken / The cat walked through the window</td>
</tr>
<tr>
<td>Grinding</td>
<td>Apple, chair, fly</td>
<td>The apple was tasty / There is apple all over the table</td>
</tr>
<tr>
<td>Instrument for action</td>
<td>Hammer, brush, shovel, tape, lock*, bicycle*, comb*, saw*</td>
<td>The hammer is heavy / She hammered the nail into the wall</td>
</tr>
<tr>
<td>Instance of an entity for kind</td>
<td>Tennis, soccer, cat, dog, class*, dinner*, chair*, table*</td>
<td>Tennis was invented in England / Tennis was fun today</td>
</tr>
<tr>
<td>Location / Place at location</td>
<td>Bench, land, floor, ground, box*, bottle*, jail*</td>
<td>The bench was made of pine / The coach benched the player</td>
</tr>
<tr>
<td>Object for placing at goal</td>
<td>Water, paint, salt, butter, frame*, dress*, oil*</td>
<td>The water is cold / He watered the plant.</td>
</tr>
<tr>
<td>Object for taking from source</td>
<td>Milk, dust, weed, peel, pit*, skin*, juice*</td>
<td>The milk tastes good / He milked the cow</td>
</tr>
<tr>
<td>Material for artifact</td>
<td>Tin, iron, china, glass, linen*, rubber*, nickel*, fur*</td>
<td>Watch out for the broken glass / He filled the glass with water</td>
</tr>
<tr>
<td>Occupation for role in action</td>
<td>Boss, nurse, guard, tutor</td>
<td>My boss is nice / He bossed me around</td>
</tr>
<tr>
<td>Pattern</td>
<td>Participating Senses</td>
<td>Example Sentences</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Place for an event</td>
<td>Vietnam, Korea, Waterloo, Iraq</td>
<td>It is raining in Vietnam / John was shot during Vietnam</td>
</tr>
<tr>
<td>Place for an institution</td>
<td>White House, Washington, Hollywood, Pentagon, Wall Street*, Supreme Court</td>
<td>The White House is being repainted / The White House made an announcement</td>
</tr>
<tr>
<td>Plant for food or material</td>
<td>Corn, broccoli, coffee, cotton, lettuce*, eggs*, oak*, pine*</td>
<td>The large field of corn / The corn is delicious</td>
</tr>
<tr>
<td>Portioning</td>
<td>Water, beer, jam</td>
<td>She drank some water / She bought three waters</td>
</tr>
<tr>
<td>Publisher for product</td>
<td>Newspaper, magazine, encyclopedia, Wall Street Journal*, New York Times*</td>
<td>The newspaper is badly printed / The newspaper fired three employees</td>
</tr>
<tr>
<td>Artist for product</td>
<td>Writer, artist, composer, Shakespeare, Dickens*, Mozart*, Picasso*</td>
<td>The writer drank a lot of wine / The writer is hard to understand</td>
</tr>
<tr>
<td>Object for contents</td>
<td>Book, CD, DVD, TV*, magazine*, newspaper*</td>
<td>The heavy, leather-bound book / The book is funny.</td>
</tr>
<tr>
<td>Visual Metaphor</td>
<td>Beam, belt, column, stick, bug*, leaf*</td>
<td>Most of the weight rests on the beam / There was a beam of light</td>
</tr>
</tbody>
</table>
How many senses?

- How many senses does the word interest have?
 - She pays 3% interest on the loan.
 - He showed a lot of interest in the painting.
 - Microsoft purchased a controlling interest in Google.
 - It is in the national interest to invade the Bahamas.
 - I only have your best interest in mind.
 - Playing chess is one of my interests.
 - Business interests lobbied for the legislation.

- Are these seven different senses? Four? Three?

- Also note: distinction between polysemy and homonymy not always clear!
WordNet senses for interest

S1: a sense of concern with and curiosity about someone or something, Synonym: involvement
S2: the power of attracting or holding one’s interest (because it is unusual or exciting etc.), Synonym: interestingness
S3: a reason for wanting something done, Synonym: sake
S4: a fixed charge for borrowing money; usually a percentage of the amount borrowed
S5: a diversion that occupies one’s time and thoughts (usually pleasantly), Synonyms: pastime, pursuit
S6: a right or legal share of something; a financial involvement with something, Synonym: stake
S7: (usu. plural) a social group whose members control some field of activity and who have common aims, Synonym: interest group
Polysemy in WordNet

- Polysemous words are part of multiple synsets
- This is why relationships are defined between synsets, not words
- On average,
 - nouns have 1.24 senses (2.79 if excluding monosemous words)
 - verbs have 2.17 senses (3.57 if excluding monosemous words)
- Is Wordnet too fine grained?

Stats from: http://wordnet.princeton.edu/wordnet/man/wnstats.7WN.html
Different sense = different translation

• Another way to define senses: if occurrences of the word have different translations, these indicate different sense

• Example interest translated into German
 – Zins: financial charge paid for load (Wordnet sense 4)
 – Anteil: stake in a company (Wordnet sense 6)
 – Interesse: all other senses

• Other examples might have distinct words in English but a polysemous word in German.
Word sense disambiguation (WSD)

• For many applications, we would like to disambiguate senses
 – we may be only interested in one sense
 – searching for chemical plant on the web, we do not want to know about chemicals in bananas

• Task: Given a polysemous word, find the sense in a given context

• Popular topic, data driven methods perform well
WSD as classification

• Given word token in context, which sense (class) is it?

• Just train a classifier, if we have sense-labeled training data:
 – She pays 3% interest/INTEREST-MONEY on the loan.
 – He showed a lot of interest/INTEREST-CURIOSITY in the painting.
 – Playing chess is one of my interests/INTEREST-HOBBY.

• SensEval and later SemEval competitions provide such data
 – held every 1-3 years since 1998
 – provide annotated corpora in many languages for WSD and other semantic tasks
Other sources of training data

• Pseudo-words: create artificial corpus by conflating words
 – Example: replace all occurrences of banana and door with new word bananadoor to get training data like:
 She ordered a bananadoor/BANANA milkshake.
 The bananadoor/DOOR opened quietly.
 He looked out the bananadoor/DOOR.
 – Tells us how well system might work in theory, but not on real words.

• Multilingual parallel corpora (translated texts aligned by sentence)
 – translation indicates sense
What kind of classifier?

Lots of options available:

- Naive Bayes (see Lecture 10)
- Maximum entropy model (see next lecture)
- Decision lists (see J&M, 20.2.2)
- Decision trees (see any ML textbook)
Naive Bayes for WSD

- Naive Bayes requires estimates of:
 - The prior probability of each class (sense)
 - The probability of each feature given each class

- These can be estimated from the training data.

- But what features to use? (Same question for other classifiers!)
Simple features

• Directly neighboring words
 – interest paid
 – rising interest
 – lifelong interest
 – interest rate
 – interest piqued

• Any content words in a 50 word window
 – pastime
 – financial
 – lobbied
 – pursued
More features

- Syntactically related words
- Syntactic role in sense
- Topic of the text
- Part-of-speech tag, surrounding part-of-speech tags

Of course, with Naive Bayes we have the usual problem with correlated features... stay tuned for next lecture.
Evaluation

- Extrinsic: test as part of IR, QA, or MT system
- Intrinsic: evaluate classification accuracy or precision/recall against gold-standard senses
- Baseline: choose the most frequent sense (sometimes hard to beat)
Issues with WSD

• Not always clear how fine-grained the gold-standard should be

• Classifiers must be trained separately for each word
 – Hard to learn anything for infrequent or unseen words
 – Requires new annotations for each new word
 – Motivates unsupervised and semi-supervised methods (see J&M 20.5, 20.10)
Semantic roles

• Often we want to know *who did what to whom*?

• But the same event and participants can have different syntactic realizations:

 Sandy broke the glass. \textit{vs.} The glass was broken by Sandy.
 She gave the boy a book. \textit{vs.} She gave a book to the boy.

• Instead of focusing on syntax, consider the \textit{semantic roles} (also called \textit{thematic roles}) defined by each event.
Commonly used thematic roles

<table>
<thead>
<tr>
<th>Role</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent</td>
<td>The boy kicked his toy</td>
</tr>
<tr>
<td>Theme</td>
<td>The boy kicked his toy</td>
</tr>
<tr>
<td>Experiencer</td>
<td>The boy felt sad</td>
</tr>
<tr>
<td>Result</td>
<td>The girl built a shelf with power tools</td>
</tr>
<tr>
<td>Instrument</td>
<td>The girl built a shelf with power tools</td>
</tr>
<tr>
<td>Source</td>
<td>She came from home</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- J&M give definitions and additional roles
Issues with thematic roles

• No universally agreed-upon set of roles

• Items with the “same” role (e.g., Instrument) may not behave quite the same

 Sandy opened the door with a key The key opened the door
 Sandy ate the salad with a fork *The fork ate the salad

• The two main NLP resources for thematic roles avoid these problems by defining very fine-grained roles:
 – Specific to individual verbs only (PropBank)
 – Specific to small groups of verbs (FrameNet)
Semantic role labeling

- The NLP task of identifying which words/phrases play which roles in an event.

- Supervised techniques similar to other classification tasks:
 - Training data from FrameNet or PropBank
 - Features are mostly related to syntactic structure and the particular words involved
 - Use one of many standard classifiers from machine learning

- Current research focuses on reducing the need for training data (e.g., to work on non-English languages)
Summary

• Aspects of lexical semantics:
 – Word senses, and methods for disambiguating.
 – Lexical semantic relationships, like synonymy, hyponymy, and meronymy.
 – Semantic roles: the roles of each argument in an event.

• Resources that provide annotated data for lexical semantics:
 – WordNet (senses, relations)
 – Propbank, FrameNet (semantic roles)