Logistic regression (1)

Sharon Goldwater

25 October 2018
Recap: dependency parsing

Last time we said:

- Transition-based dependency parser uses a shift-reduce algorithm to efficiently parse sentences, producing projective structures.
- Can either be greedy or use beam search.
- Either way, we need a model to tell us $P(\text{action}|\text{configuration})$.
- Any classifier could do, but we’ll use logistic regression.
Today’s lecture

• A simpler example to illustrate logistic regression.

• How would we apply it to dependency parsing?

• How can we use it for reranking?

Note: notation in this lecture and later tutorial follow JM2 6.7. The notation in JM3 5.6 is different (and incomplete).
Example task: word sense disambiguation

Remember, logistic regression can be used for any classification task. The following slides use an example from lexical semantics:

- Given a word with different meanings (senses), can we classify which sense is intended?

I visited the Ford plant yesterday.
The farmers plant soybeans in spring.
This plant produced three kilos of berries.
WSD as example classification task

- Disambiguate three senses of the target word `plant`
 - \vec{x} are the words and POS tags in the document the target word occurs in
 - y is the latent sense. Assume three possibilities:

y	sense
1	Noun: a member of the plant kingdom
2	Verb: to place in the ground
3	Noun: a factory

- We want to build a model of $P(y|\vec{x})$.
Multinomial logistic regression

- Plain logistic regression is a **binary classifier**: yes/no.

- If we want to discriminate multiple classes, we need to use **multinomial logistic regression**.

- JM3 goes through binary version first, then multinomial. Here I will do the more general case only.

- Historically, these models were often called **Maximum Entropy** (MaxEnt) models in NLP.
Defining a MaxEnt model: intuition

• Start by defining a set of features that we think are likely to help discriminate the classes. E.g.,
 – the POS of the target word
 – the words immediately preceding and following it
 – other words that occur in the document

• During training, the model will learn how much each feature contributes to the final decision.
Defining a MaxEnt model

• Features $f_i(\vec{x}, y)$ depend on both observed and latent variables. E.g., if tgt is the target word:

$$
\begin{align*}
 f_1 & : \text{POS}(tgt) = \text{NN} & y = 1 \\
 f_2 & : \text{POS}(tgt) = \text{NN} & y = 2 \\
 f_3 & : \text{preceding_word}(tgt) = \text{‘chemical’} & y = 3 \\
 f_4 & : \text{doc_contains}(\text{‘animal’}) & y = 1
\end{align*}
$$
Defining a MaxEnt model

- Features $f_i(\vec{x}, y)$ depend on both observed and latent variables. E.g., if tgt is the target word:

 \begin{align*}
 f_1 &: \quad \text{POS}(tgt) = \text{NN} \& y = 1 \\
 f_2 &: \quad \text{POS}(tgt) = \text{NN} \& y = 2 \\
 f_3 &: \quad \text{preceding_word}(tgt) = \text{‘chemical’} \& y = 3 \\
 f_4 &: \quad \text{doc_contains}(\text{‘animal’}) \& y = 1
 \end{align*}

- Each feature f_i has a real-valued weight w_i (learned in training).

- $P(y|\vec{x})$ is a monotonic function of $\vec{w} \cdot \vec{f}$ (that is, $\sum_i w_i f_i(\vec{x}, y)$).
Defining a MaxEnt model

- Features $f_i(\vec{x}, y)$ depend on both observed and latent variables. E.g., if tgt is the target word:

 \begin{align*}
 f_1 : \quad & \text{POS(\text{tgt}) = NN \& } y = 1 \\
 f_2 : \quad & \text{POS(\text{tgt}) = NN \& } y = 2 \\
 f_3 : \quad & \text{preceding_word(\text{tgt}) = ‘chemical’ \& } y = 3 \\
 f_4 : \quad & \text{doc_contains(‘animal’) \& } y = 1
 \end{align*}

- Each feature f_i has a real-valued weight w_i (learned in training).

- $P(y|\vec{x})$ is a monotonic function of $\vec{w} \cdot \vec{f}$ (that is, $\sum_i w_i f_i(\vec{x}, y)$).
 - To make $P(y|\vec{x})$ large, we need weights that make $\vec{w} \cdot \vec{f}$ large.
Example of features and weights

• Let’s look at just two features from the plant disambiguation example:

\[f_1 : \text{POS(tgt)} = \text{NN} \& y = 1 \]
\[f_2 : \text{POS(tgt)} = \text{NN} \& y = 2 \]

• Our classes are:

\{1: member of plant kingdom; 2: put in ground; 3: factory\}

• Our example doc \(\vec{x} \):

\[\ldots \text{animal/NN} \ldots \text{chemical/JJ plant/NN} \ldots \]
Two cases to consider

• Computing $P(y = 1|x)$:
 – Here, $f_1 = 1$ and $f_2 = 0$.
 – We would expect the probability to be relatively high.
 – Can be achieved by having a positive value for w_1.
 – Since $f_2 = 0$, its weight has no effect on the final probability.

• Computing $P(y = 2|x)$:
Two cases to consider

- Computing \(P(y = 1 | \vec{x}) \):
 - Here, \(f_1 = 1 \) and \(f_2 = 0 \).
 - We would expect the probability to be relatively high.
 - Can be achieved by having a positive value for \(w_1 \).
 - Since \(f_2 = 0 \), its weight has no effect on the final probability.

- Computing \(P(y = 2 | \vec{x}) \):
 - Here, \(f_1 = 0 \) and \(f_2 = 1 \).
 - We would expect the probability to be close to zero, because sense 2 is a verb sense, and here we have a noun.
 - Can be achieved by having a large negative value for \(w_2 \).
 - By doing so, \(f_2 \) says: “If I am active, do not choose sense 2!”.
Classification with MaxEnt

• Choose the class that has highest probability according to

\[P(y|\vec{x}) = \frac{1}{Z} \exp \left(\sum_i w_i f_i(\vec{x}, y) \right) \]

where

– \(\exp(x) = e^x \) (the monotonic function)
– \(\sum_i w_i f_i \) is the dot product of \(\vec{w} \) and \(\vec{f} \), also written \(\vec{w} \cdot \vec{f} \).
– The normalization constant \(Z = \sum_{y'} \exp(\sum_i w_i f_i(\vec{x}, y')) \)
Which features are active?

- Example doc:

 \[\text{[... animal/NN ... chemical/JJ plant/NN ...]} \]

 \[
 P(y = 1|\vec{x}) \quad \text{will have} \quad f_1, f_4 = 1 \quad \text{and} \quad f_2, f_3 = 0
 \]

 \[
 P(y = 2|\vec{x}) \quad f_2 = 1 \quad f_1, f_3, f_4 = 0
 \]

 \[
 P(y = 3|\vec{x}) \quad f_3 = 1 \quad f_1, f_2, f_4 = 0
 \]

- Notice that zero-valued features have no effect on the final probability

- Other features will be multiplied by their weights, summed, then \text{exp.}
Feature weights: intuition

- $P(y|\vec{x})$ increases when $\sum_i w_i f_i(\vec{x}, y)$ increases.

- Using the same binary features of the target word tgt:

 f_1: $\text{POS}(tgt) = \text{NN} \& y = 1$
 f_2: $\text{POS}(tgt) = \text{NN} \& y = 2$
 f_3: $\text{preceding_word}(tgt) = \text{‘chemical’} \& y = 3$
 f_4: $\text{doc_contains(‘animal’) \& y = 1}$

- For senses $\{1: \text{member of plant kingdom}; 2: \text{put in ground}; 3: \text{factory}\}$,
 which weights are likely to be positive? Negative?
Feature templates

• In practice, features are usually defined using templates

 $\text{POS(tgt)} = t \ & \ y$
 $\text{preceding_word(tgt)} = w \ & \ y$
 $\text{doc_contains(w)} \ & \ y$

 – instantiate with all possible POSs t or words w and classes y
 – usually filter out features occurring very few times
 – templates can also define real-valued or integer-valued features

• NLP tasks often have a few templates, but 1000s or 10000s of features
Features for dependency parsing

- We want the model to tell us $P(\text{action}|\text{configuration})$.
- So y is the action, and \vec{x} is the configuration.
- Features are various combinations of words/tags from stack/input:

<table>
<thead>
<tr>
<th>Source</th>
<th>Feature templates</th>
</tr>
</thead>
<tbody>
<tr>
<td>One word</td>
<td>$s_{1.w}$</td>
</tr>
<tr>
<td></td>
<td>$s_{2.w}$</td>
</tr>
<tr>
<td></td>
<td>$b_{1.w}$</td>
</tr>
<tr>
<td>Two word</td>
<td>$s_{1.w} \circ s_{2.w}$</td>
</tr>
<tr>
<td></td>
<td>$s_{1.t} \circ s_{2.wt}$</td>
</tr>
<tr>
<td></td>
<td>$s_{1.w} \circ s_{1.t} \circ s_{2.t}$</td>
</tr>
</tbody>
</table>

Figure 14.9 Standard feature templates for training transition-based dependency parsers. In the template specifications s_n refers to a location on the stack, b_n refers to a location in the word buffer, w refers to the wordform of the input, and t refers to the part of speech of the input.
MaxEnt for n-best re-ranking

- So far, we’ve used logistic regression for classification.
 - Fixed set of classes, same for all inputs.

- Word sense disambiguation:

<table>
<thead>
<tr>
<th>Input</th>
<th>Possible outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>word in doc1</td>
<td>sense 1, sense 2, sense 3</td>
</tr>
<tr>
<td>word in doc2</td>
<td>sense 1, sense 2, sense 3</td>
</tr>
</tbody>
</table>

- Dependency parsing:

<table>
<thead>
<tr>
<th>Input</th>
<th>Possible outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>parser config1</td>
<td>action 1, . . . action n</td>
</tr>
<tr>
<td>parser config2</td>
<td>action 1, . . . action n</td>
</tr>
</tbody>
</table>
MaxEnt for n-best re-ranking

• We can also use MaxEnt for reranking an n-best list.

• Example scenario (Charniak and Johnson, 2005):
 – Use a generative parsing model M with beam search to produce a list of the top n parses for each sentence. (= most probable according to M)
 – Use a MaxEnt model M' to re-rank those n parses, then pick the most probable according to M'.
Why do it this way?

Why two stages?

• Generative models typically faster to train and run, but can’t use arbitrary features.

• In NLP, MaxEnt models may have so many features that extracting them from each example can be time-consuming, and training is even worse (see next lecture).

Why are the features a function of both inputs and outputs?

• Because for re-ranking this matters: the outputs may not be pre-defined.
MaxEnt for n-best re-ranking

- In reranking scenario, the options depend on the input. E.g., parsing, with \(n = 2 \):
 - Input: healthy dogs and cats
 - Possible outputs:

```
NP
   JJ
  healthy
   NP
      dogs
      CC
      NP
         and
         cats
```

```
NP
   JJ
  healthy
   NP
      dogs
      and
      NP
         cats
```
MaxEnt for n-best re-ranking

• In reranking scenario, the options depend on the input. E.g., parsing, with $n = 2$:

 – Input: *ate pizza with cheese*
 – Possible outputs:

```
  VP
  V
   ate
  NP
    pizza
  PP

  VP
  V
   ate
  NP
    pizza
  P
   with
  NP
    cheese
```

Sharon Goldwater logistic regression 22
MaxEnt for constituency parsing

• Now we have $y = \text{parse tree}, \ x = \text{sentence}$.

• Features can mirror parent-annotated/lexicalized PCFG:
 – counts of each CFG rule used in y
 – pairs of words in head-head dependency relations in y
 – each word in x with its parent and grandparent categories in y.

• Note these are no longer binary features.
Global features

• Features can also capture global structure. E.g., from Charniak and Johnson (2005):

 – length difference of coordinated conjuncts

```
  NP
    JJ
      healthy
  NP
    CC
      NP
dogs
    and
  NP
cats
  vs

  NP
    CC
      NP
  healthy
    and
  NP
dogs
    cats
```
Global features

- Features can also capture global structure. E.g., from Charniak and Johnson (2005):
 - `cat=c & len=l & end_sent & before_punc`
 - i.e., are heavy (long) noun phrases at the end of the sentence?

 I gave him the book about NLP
 vs
 I gave the book about NLP to him
Features for parsing

- Altogether, Charniak and Johnson (2005) use 13 feature templates
 - with a total of 1,148,697 features
 - and that is after removing features occurring less than five times

- One important feature not mentioned earlier: the log prob of the parse under the generative model!

- So, how does it do?
Parser performance

• F_1-measure (from precision/recall on constituents) on WSJ test:

 standard PCFG $\sim 80\%$
 lexicalized PCFG (Charniak, 2000) 89.7%
 re-ranked LPCFG (Charniak and Johnson, 2005) 91.0%

1 Figure from (Charniak, 1996): assumes POS tags as input
Parser performance

- F_1-measure (from precision/recall on constituents) on WSJ test:

 - standard PCFG \(\sim 80\% \)
 - lexicalized PCFG (Charniak, 2000) 89.7%
 - re-ranked LPCFG (Charniak and Johnson, 2005) 91.0%

- Recent WSJ parser is 93.8%, combining NNets and ideas from parsing, language modelling (Choe and Charniak, 2016)

- But as discussed earlier, other languages/domains are still much worse.
Evaluating during development

Whenever we have a multistep system, worth asking: where should I put my effort to improve the system?

- If my first stage (generative model) is terrible, then \(n \) needs to be very large to ensure it includes the correct parse.

- Worst case: if computation is limited (\(n \) is small), maybe the correct parse isn’t there at all.

- Then it doesn’t matter how good my second stage is, I won’t get the right answer.
Another use of oracles

Can be useful to compute oracle performance on the first stage.

• Oracle always chooses the correct parse if it is available.

• Difference between oracle and real system = how much better it could get by improving the 2nd stage model.

• If oracle performance is very low, need to increase n or improve the first stage model.
Summary of model types

- Probabilistic generative models:
 - model $P(x, y)$ by assuming a generative process
 - easy to train but independence assumptions can be problematic

- Probabilistic discriminative models:
 - model $P(y|x)$ only, have no generative process
 - can use arbitrary local/global features, including correlated ones
 - much slower to train; so may use n-best list

- Both kinds of model are used for a variety of NLP tasks.
 - Classification, parsing (discussed here)
 - Sequence models: e.g., taggers that use spelling features.
Overall summary

• We’ve seen examples of applying MaxEnt to WSD, dependency parsing, and n-best reranking for constituency parsing.

• Discussed model structure and the role of features.

• Next time: training the model and relationship to neural nets.
References

