Recap: transition-based dependency parsing

Basic transition-based parser:

- **Configuration:** consisting of the stack state, input buffer, and dependency relations found so far.
- **Actions:** e.g., Shift, LeftArc, RightArc.
- Assume we have an oracle that tells us \(P(\text{action}|\text{configuration}) \).
- Choosing the best action at each step (greedy parsing) produces a parse in linear time.

Recap: parsing as search

Parser is searching through a very large space of possible parses.

- Greedy parsing is a depth-first strategy.
- **Beam search** is a limited breadth-first strategy.
Beam search: basic idea

- Instead of choosing only the best action at each step, choose a few of the best.
- Extend previous partial parses using these options.
- At each time step, keep a fixed number of best options, discard anything else.

Advantages:
- May find a better overall parse than greedy search,
- While using less time/memory than exhaustive search.

Evaluating dependency parsers

- How do we know if beam search is helping?
- As usual, we can evaluate against a gold standard data set. But what evaluation measure to use?

The agenda

An ordered list of configurations (parser state + parse so far).

- Items are ordered by score: how good a configuration is it?
- Implemented using a priority queue data structure, which efficiently inserts items into the ordered list.
- In beam search, we use an agenda with a fixed size (beam width). If new high-scoring items are inserted, discard items at the bottom below beam width.

Won’t discuss scoring function here; but beam search idea is used across NLP (e.g., in best-first constituency parsing, NNet models.)

Evaluating dependency parsers

- By construction, the number of dependencies is the same as the number of words in the sentence.
- So we do not need to worry about precision and recall, just plain old accuracy.
- **Labelled Attachment Score** (LAS): Proportion of words where we predicted the correct head and label.
- **Unlabelled Attachment Score** (UAS): Proportion of words where we predicted the correct head, regardless of label.
Building a classifier for next actions

We said:
• Assume we have an oracle that tells us $P(\text{action}|\text{configuration})$.

Where does that come from?

Classification for action prediction

We’ve seen text classification:
• Given (features from) text document, predict the class it belongs to.

Generalized classification task:
• Given features from observed data, predict one of a set of classes (labels).

Here, actions are the labels to predict:
• Given (features from) the current configuration, predict the next action.

Training data

Our goal is:
• Given (features from) the current configuration, predict the next action.

Our corpus contains annotated sentences such as:

A hearing on the issue is scheduled today

Is this sufficient to train a classifier to achieve our goal?

Creating the right training data

Well, not quite. What we need is a sequence of the correct (configuration, action) pairs.

• Problem: some sentences may have more than one possible sequence that yields the correct parse. (see tutorial exercise)

• Solution: JM3 describes a procedure for converting each annotated sentence to a unique sequence of (configuration, action) pairs.

OK, finally! So what kind of model will we train?
Logistic regression

- Actually, we could use any kind of classifier (Naive Bayes, SVM, neural net...)
- Logistic regression is a standard approach that illustrates a different type of model: a **discriminative** probabilistic model.
 - So far, all our models have been **generative**.
- Even if you have seen it before, the formulation often used in NLP is slightly different from what you might be used to.

Generative probabilistic models

- Model the joint probability $P(\vec{x}, \vec{y})$
 - \vec{x}: the observed variables (what we’ll see at test time).
 - \vec{y}: the latent variables (not seen at test time; must predict).

<table>
<thead>
<tr>
<th>Model</th>
<th>\vec{x}</th>
<th>\vec{y}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive Bayes</td>
<td>features</td>
<td>classes</td>
</tr>
<tr>
<td>HMM</td>
<td>words</td>
<td>tags</td>
</tr>
<tr>
<td>PCFG</td>
<td>words</td>
<td>tree</td>
</tr>
</tbody>
</table>

Generative models have a “generative story”

- a probabilistic process that describes how the data were created
 - Multiplying probabilities of each step gives us $P(\vec{x}, \vec{y})$.
- **Naive Bayes**: For each item i to be classified, (e.g., document)
 - Generate its class c_i (e.g., sport)
 - Generate its features $f_{i1} \ldots f_{in}$ conditioned on c_i (e.g., ball, goal, Tuesday)

Generative models have a “generative story”

- a probabilistic process that describes how the data were created
 - Multiplying probabilities of each step gives us $P(\vec{x}, \vec{y})$.
- **Naive Bayes**: For each item i to be classified, (e.g., document)
 - Generate its class c_i (e.g., sport)
 - Generate its features $f_{i1} \ldots f_{in}$ conditioned on c_i (e.g., ball, goal, Tuesday)

Result:

$$P(\vec{c}, \vec{f}) = \prod_i \left[P(c_i) \prod_j P(f_{ij}|c_i) \right]$$
Other generative stories

- **HMM**: For each position i in sentence,
 - Generate its tag t_i conditioned on previous tag t_{i-1}
 - Generate its word w_i conditioned on t_i

- **PCFG**:
 - Starting from S node, recursively generate children for each phrasal category c_i conditioned on c_i, until all unexpanded nodes are pre-terminals (tags).
 - For each pre-terminal t_i, generate a word w_i conditioned on t_i.

Inference in generative models

- At test time, given only \vec{x}, infer \vec{y} using Bayes’ rule:
 \[
P(\vec{y}|\vec{x}) = \frac{P(\vec{x}|\vec{y})P(\vec{y})}{P(\vec{x})}
 \]

- So, notice we actually model $P(\vec{x}, \vec{y})$ as $P(\vec{x}|\vec{y})P(\vec{y})$.
 - You can confirm this for each of the previous models.

Discriminative probabilistic models

- Model $P(\vec{y}|\vec{x})$ directly
 - No model of $P(\vec{x}, \vec{y})$
 - No generative story
 - No Bayes’ rule

- One big advantage: we can use arbitrary features and don’t have to make strong independence assumptions.

- But: unlike generative models, we can’t get $P(\vec{x}) = \sum_{\vec{y}} P(\vec{x}, \vec{y})$.

Discriminative models more broadly

- Trained to **discriminate** right v. wrong value of \vec{y}, given input \vec{x}.

- Need not be probabilistic.

- Examples: support vector machines, (some) neural networks, decision trees, nearest neighbor methods.

- Here, we consider only multinomial logistic regression models, which **are** probabilistic.
 - *multinomial* means more than two possible classes
 - otherwise (or if lazy) just **logistic regression**
 - In NLP, also known as Maximum Entropy (or MaxEnt) models.
Example task: word sense disambiguation

Remember, logistic regression can be used for any classification task. The following slides use an example from lexical semantics:

- Given a word with different meanings (senses), can we classify which sense is intended?

I visited the Ford **plant** yesterday.
The farmers **plant** soybeans in spring.
This **plant** produced three kilos of berries.

WSD as example classification task

- disambiguate three senses of the target word **plant**
 - \vec{x} are the words and POS tags in the document the target word occurs in
 - y is the latent sense. Assume three possibilities:

<table>
<thead>
<tr>
<th>y</th>
<th>sense</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Noun: a member of the plant kingdom</td>
</tr>
<tr>
<td>2</td>
<td>Verb: to place in the ground</td>
</tr>
<tr>
<td>3</td>
<td>Noun: a factory</td>
</tr>
</tbody>
</table>

Defining a MaxEnt model

- Define features $f_i(\vec{x}, y)$ that depend on both observed and latent variables.
 - f_1: POS(tgt) = NN & $y = 1$
 - f_2: POS(tgt) = NN & $y = 2$
 - f_3: preceding_word(tgt) = ‘chemical’ & $y = 3$
 - f_4: doc_contains(‘animal’) & $y = 1$

Where tgt is the target word

- Each feature f_i has a real-valued weight w_i (learned in training).
- $P(y|\vec{x})$ is a monotonic function of $\sum_i w_i f_i(\vec{x}, y)$: they go up/down together.

Classification with MaxEnt

- Choose the class that has highest probability according to

$$P(y|\vec{x}) = \frac{1}{Z} \exp \left(\sum_i w_i f_i(\vec{x}, y) \right)$$

Where

- $\exp(x) = e^x$ (the monotonic function)
- $\sum_i w_i f_i$ is the dot product of \vec{w} and \vec{f}, also written $\vec{w} \cdot \vec{f}$.
- The normalization constant $Z = \sum_{y'} \exp(\sum_i w_i f_i(\vec{x}, y'))$
Which features are active?

- Example doc:

 [...] animal/NN ... chemical/JJ plant/NN ...]

 $P(y = 1|x)$ will have $f_1, f_4 = 1$ and $f_2, f_3 = 0$

 $P(y = 2|x)$

 $f_2 = 1$ $f_1, f_3, f_4 = 0$

 $P(y = 3|x)$

 $f_3 = 1$ $f_1, f_2, f_4 = 0$

- Notice that zero-valued features have no effect on the final probability.

- Other features will be multiplied by their weights, summed, then exp.

Feature templates

- In practice, features are usually defined using templates

 \[
 \begin{align*}
 \text{POS(tgt)} &= t \quad \& \quad y \\
 \text{preceding word(tgt)} &= w \quad \& \quad y \\
 \text{doc contains}(w) \quad \& \quad y
 \end{align*}
\]

 - instantiate with all possible POSs t or words w and classes y
 - usually filter out features occurring very few times
 - templates can also define real-valued or integer-valued features

- NLP tasks often have a few templates, but 1000s or 10000s of features

Feature weights: intuition

- $P(y|x)$ increases when $\sum_i w_i f_i(x, y)$ increases.

- Using the same binary features of the target word tgt:

 f_1: \text{POS(tgt)} = NN \& y = 1

 f_2: \text{POS(tgt)} = NN \& y = 2

 f_3: \text{preceding word(tgt)} = ‘chemical’ \& y = 3

 f_4: \text{doc contains(‘animal’)} \& y = 1

- For senses \{1: member of plant kingdom; 2: put in ground; 3: factory\},
 which weights are likely to be positive? Negative?

Features for dependency parsing

Extract various combinations of words/tags from stack/input:
• So far, we’ve used logistic regression for classification.
 – Fixed set of classes, same for all inputs.

• Word sense disambiguation:

<table>
<thead>
<tr>
<th>Input</th>
<th>Possible outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>word in doc1</td>
<td>sense 1, sense 2, sense 3</td>
</tr>
<tr>
<td>word in doc2</td>
<td>sense 1, sense 2, sense 3</td>
</tr>
</tbody>
</table>

• Dependency parsing:

<table>
<thead>
<tr>
<th>Input</th>
<th>Possible outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>parser config1</td>
<td>action 1, . . . action n</td>
</tr>
<tr>
<td>parser config2</td>
<td>action 1, . . . action n</td>
</tr>
</tbody>
</table>

• In NLP, we often use it for picking the best of \(n \) options, where the options depend on the input. For example, with \(n = 2 \):
 – Input: healthy dogs and cats
 – Possible outputs:

 ![Dependent Parsing Diagram]

 ![Dependent Parsing Diagram]

• This scenario is why we defined our features as a function of both inputs and outputs: because the outputs may not be pre-defined.

 – Typical usage: use a generative model to produce the options, then re-rank using a discriminative model.
 – Generative models typically faster to train and run, but can’t use arbitrary features.
 – In NLP, MaxEnt models may have so many features that extracting them from each example can be time-consuming, and training is even worse (see next lecture).
MaxEnt for constituency parsing

- Now we have $y = \text{parse tree}$, $x = \text{sentence}$.
- Features can mirror parent-annotated/lexicalized PCFG:
 - counts of each CFG rule used in y
 - pairs of words in head-head dependency relations in y
 - each word in x with its parent and grandparent categories in y.
- Note these are no longer binary features.

Global features

- Features can also capture global structure. E.g., from Charniak and Johnson (2005):
 - length difference of coordinated conjuncts

Features for parsing

- Altogether, Charniak and Johnson (2005) use 13 feature templates
 - with a total of 1,148,697 features
 - and that is after removing features occurring less than five times
- One important feature not mentioned earlier: the log prob of the parse under the generative model!
- So, how does it do?
Parser performance

- F₁-measure (from precision/recall on constituents) on WSJ test:
 - standard PCFG: ~80% ¹
 - lexicalized PCFG (Charniak, 2000): 89.7%
 - re-ranked LPCFG (Charniak and Johnson, 2005): 91.0%

¹Figure from (Charniak, 1996): assumes POS tags as input

Summary of model types

- Probabilistic generative models:
 - model \(P(x, y) \) by assuming a generative process
 - easy to train but independence assumptions can be problematic

- Probabilistic discriminative models:
 - model \(P(y|x) \) only, have no generative process
 - can use arbitrary local/global features, including correlated ones
 - much slower to train; so may use \(n \)-best list

- Both kinds of model are used for a variety of NLP tasks.
 - Classification, parsing (discussed here)
 - Sequence models: e.g., taggers that use spelling features.

References

