Outline

- Evaluating Parsers
 - Parsing Complexity
 - Discriminative Approaches
Evaluating Parsers

• We need a measure to evaluate parser performance against gold standard
 – ratio of fully correct sentences parses too coarse
 → ratio of correct constituents

• Does correct mean precision?

\[
\text{precision} = \frac{\text{count}(\text{matching constituents})}{\text{count}(\text{predicted constituents})}
\]

• Does correct mean recall?

\[
\text{precision} = \frac{\text{count}(\text{matching constituents})}{\text{count}(\text{gold standard constituents})}
\]
High Precision, Low Recall

all predicted constituents match gold standard (precision 1/1)
... but we are missing quite a few (recall 1/6)

John from Hoboken and Jim

Philipp Koehn
ANLP Lecture 17
23 October 2013
Low Precision, High Recall

system

```
  PP
  NP
  NP
  NP
  PP
  NNP
  John
  IN
  from
  NP
  NNP
  Hoboken
```

gold standard

```
  NP
  PP
  NP
  PP
  CC
  and
  NP
  NNP
  Jim
  IN
  from
  NP
  NNP
  Hoboken
```

all gold standard constituents are predicted (recall 6/6)
... but we are predicting many more (precision 6/10)
PARSEVAL

- F-measure: balance of precision and recall

\[
F_1 = \frac{\text{precision} \times \text{recall}}{(\text{precision} + \text{recall})/2}
\]

- F-measure is used in many other NLP tasks and may be adjusted to give more emphasis to either precision or recall
Outline

- Evaluating Parsers
- Parsing Complexity
- Discriminative Approaches
Parsing Complexity

- CKY decoding involves the construction of a chart

- The chart has $O(n^2)$ contiguous spans
Parsing Complexity (2)

- When building entries for a span, $O(n)$ different combination of smaller spans are possible

... assuming binary grammars (at most two non-terminal on the right)
- but then grammars can always be binarized

⇒ Parsing complexity is $O(n^3)$
Comments on Parsing Complexity

• CKY parsing is $O(n^3)$ with respect to sentence length
 – the number of different non-terminals also plays a role

• Not the end of the world, but long sentences are a problem

• And this assumes binary grammars
 – more complex grammars may be binarized
 – ... but that increases the number of non-terminals dramatically

• Parsing speed may be improved with heuristic beam search that focuses on the more promising parses
Coarse-to-Fine Parsing

- Parsing the sentence in stages
 - First, use a reduced grammar (e.g. fewer non-terminals)
 - Then, reduced search with full grammar

- Reduction in search
 - limit exploration of intermediate spans to viable paths to full parse
 - use first stage to obtain outside cost estimates
Outside Cost Estimation

- Heuristic estimate on how expensive it will be to parse the rest of the sentence
Outside Cost Estimates

• Some spans are more promising than others
Outline

• Evaluating Parsers

• Parsing Complexity

• Discriminative Approaches

parts of the following materially adapted from Michael Collins’ 2007 class 6.864 at MIT
Global Features

- For instance: parallel structures in coordination

Parallel structure:
- John from Hoboken and Jim from Covina

Non-parallel structure:
- John from Hoboken and Jim from Covina
Structured Prediction

• The proposed statistical parsing model is a generative model
 – predicting the parse tree is broken down into a sequence of steps (derivation)
 – each step is modeled by a conditional probability distribution
 – probability distributions are estimated over the training data

• Discriminative approach
 – each possible parse tree is defined by a set of features
 – each feature has a weight that determines its importance
 – directly optimize on a performance criterion (parser performance)
Global Linear Models

• A generating function GEN maps an input x to candidates trees y_1, \ldots, y_n

$$\text{GEN}(x) = \{y_1, \ldots, y_n\}$$

• Each feature function h_i maps a parse tree (x, y) to a feature value $h(x, y)$

• Features are combined in a linear model

$$\sum_i \lambda_i h_i(x, y)$$

• The goal of learning is to find the feature weights λ_i
Features in Parsing

- Rule applications
 - number of times the rule $\text{NP} \rightarrow \text{NP PP}$ is used

- Long distance features
 - number of time Mary is object of likes

- Complex structural features
 - number of parallel co-ordinations

- Other models
 - parse probability under Collins’ generative parsing model
n-Best List Re-ranking

- Use the generating function to generate the top n most likely parses for an input sentence
 - for instance, using the generative parsing model

- Evaluate each parse tree against the gold standard

- Use a machine learning method to optimize re-ranking of the n-best list so that the highest scoring (or at least higher scoring) parse come out at the top
 - for instance, the Perceptron algorithm
Perceptron Algorithm

Input: set of sentences with gold standard parses \((x, y)\),
set of features \(h_i\)

Output: set of weights \(\lambda_i\) for each feature

1: \(\lambda_i = 0\) for all \(i\)
2: **while** not converged **do**
3: **for all** sentences \(x\) **do**
4: \(y_{\text{best}} = \) best parse tree according to model
5: \(y_{\text{gold}} = \) gold standard parse tree
6: **if** \(y_{\text{best}} \neq y_{\text{gold}}\) **then**
7: **for all** features \(h_i\) **do**
8: \(\lambda_i += h_i(x, y_{\text{gold}}) - h_i(x, y_{\text{best}})\)
9: **end for**
10: **end if**
11: **end for**
12: **end while**
Oracle Performance

• It is often useful to ask: what is possible?

• Oracle performance
 – for each sentence
 * match all candidates against goals standard
 * store best-matching candidate
 – compute overall performance over this set

⇒ upper limit of what can be gained with re-ranking
Oracle Performance (2)

- Often one finds:
 - n-best lists are too limiting
 - parse forests (extracted from search) better
 - re-parsing with new model best
 ... but often too expensive

- Caution
 - Oracle often too optimistic for actual possible performance
 - higher Oracle does not imply a better set of candidates
Grand Challenge in Structured Prediction

- Many algorithms require computation of the current best parse under the model
 - for instance, Perceptron, gradient descent, ...

- Finding best parse often computationally hard
 - especially when using global features

- Challenge: find efficient search methods for structured prediction problems