Evaluating Parsers

- We need a measure to evaluate parser performance against gold standard
 - ratio of fully correct sentences parses too coarse
 - ratio of correct constituents

- Does correct mean precision?
 \[
 \text{precision} = \frac{\text{count}(\text{matching constituents})}{\text{count}(\text{predicted constituents})}
 \]

- Does correct mean recall?
 \[
 \text{precision} = \frac{\text{count}(\text{matching constituents})}{\text{count}(\text{gold standard constituents})}
 \]

High Precision, Low Recall

system:

- John
 - NNP
 - IN
 - NN
 - CC
 - NNP

- from
 - NN
 - PP
 - CC
 - NNP

- Hoboken and Jim
 - NNP
 - IN
 - NN
 - PP

gold standard:

- John from Hoboken and Jim
 - NNP
 - IN
 - NN
 - CC
 - NNP

all predicted constituents match gold standard (precision 1/1)

... but we are missing quite a few (recall 1/6)
Low Precision, High Recall

system

gold standard

all gold standard constituents are predicted (recall 6/6)
... but we are predicting many more (precision 6/10)

PARSEVAL

- F-measure: balance of precision and recall
 \[F_1 = \frac{\text{precision} \times \text{recall}}{(\text{precision} + \text{recall})/2} \]

- F-measure is used in many other NLP tasks and may be adjusted to give more emphasis to either precision or recall

Outline

- Evaluating Parsers
- Parsing Complexity
- Discriminative Approaches

Parsing Complexity

- CKY decoding involves the construction of a chart

- The chart has \(O(n^2) \) contiguous spans
Parsing Complexity (2)

• When building entries for a span, $O(n)$ different combination of smaller spans are possible

$W_1 W_2 W_3 W_4$

- ... assuming binary grammars (at most two non-terminal on the right)
- but then grammars can always be binarized

⇒ Parsing complexity is $O(n^3)$

Comments on Parsing Complexity

• CKY parsing is $O(n^3)$ with respect to sentence length
 - the number of different non-terminals also plays a role

• Not the end of the world, but long sentences are a problem

• And this assumes binary grammars
 - more complex grammars may be binarized
 - ... but that increases the number of non-terminals dramatically

• Parsing speed may be improved with heuristic beam search that focuses on the more promising parses

Coarse-to-Fine Parsing

• Parsing the sentence in stages
 - First, use a reduced grammar (e.g. fewer non-terminals)
 - Then, reduced search with full grammar

• Reduction in search
 - limit exploration of intermediate spans to viable paths to full parse
 - use first stage to obtain outside cost estimates

Outside Cost Estimation

• Heuristic estimate on how expensive it will be to parse the rest of the sentence
Outside Cost Estimates

Some spans are more promising than others

Outline

- Evaluating Parsers
- Parsing Complexity
- Discriminative Approaches

Global Features

- For instance: parallel structures in coordination

Structured Prediction

- The proposed statistical parsing model is a generative model
 - predicting the parse tree is broken down into a sequence of steps (derivation)
 - each step is modeled by a conditional probability distribution
 - probability distributions are estimated over the training data
- Discriminative approach
 - each possible parse tree is defined by a set of features
 - each feature has a weight that determines its importance
 - directly optimize on a performance criterion (parser performance)
Global Linear Models

- A generating function GEN maps an input x to candidates trees y_1, \ldots, y_n
 \[\text{GEN}(x) = \{y_1, \ldots, y_n\} \]
- Each feature function h_i maps a parse tree (x, y) to a feature value $h(x, y)$
- Features are combined in a linear model
 \[\sum_i \lambda_i h_i(x, y) \]
- The goal of learning is to find the feature weights λ_i

Features in Parsing

- Rule applications
 - number of times the rule $\text{NP} \rightarrow \text{NP PP}$ is used
- Long distance features
 - number of times Mary is object of likes
- Complex structural features
 - number of parallel co-ordinations
- Other models
 - parse probability under Collins’ generative parsing model

n-Best List Re-ranking

- Use the generating function to generate the top n most likely parses for an input sentence
 - for instance, using the generative parsing model
- Evaluate each parse tree against the gold standard
- Use a machine learning method to optimize re-ranking of the n-best list so that the highest scoring (or at least higher scoring) parse come out at the top
 - for instance, the Perceptron algorithm

Perceptron Algorithm

Input: set of sentences with gold standard parses (x, y), set of features h_i
Output: set of weights λ_i for each feature
1: $\lambda_i = 0$ for all i
2: while not converged do
3: for all sentences x do
4: $y_{\text{best}} = \text{best parse tree according to model}$
5: $y_{\text{gold}} = \text{gold standard parse tree}$
6: if $y_{\text{best}} \neq y_{\text{gold}}$ then
7: for all features h_i do
8: $\lambda_i += h_i(x, y_{\text{gold}}) - h_i(x, y_{\text{best}})$
9: end for
10: end if
11: end for
12: end while
Oracle Performance

• It is often useful to ask: what is possible?

• Oracle performance
 – for each sentence
 * match all candidates against goals standard
 * store best-matching candidate
 – compute overall performance over this set

⇒ upper limit of what can be gained with re-ranking

Oracle Performance (2)

• Often one finds:
 – n-best lists are too limiting
 – parse forests (extracted from search) better
 – re-parsing with new model best
 ... but often too expensive

• Caution
 – Oracle often too optimistic for actual possible performance
 – higher Oracle does not imply a better set of candidates

Grand Challenge in Structured Prediction

• Many algorithms require computation of the current best parse under the model
 – for instance, Perceptron, gradient descent, ...

• Finding best parse often computationally hard
 – especially when using global features

• Challenge: find efficient search methods for structured prediction problems