ANLP Lecture 7
Language Modeling (II)

Sharon Goldwater
(based on slides by Philipp Koehn)

30 September 2014
Recap: smoothing

- Add-one: simple, but steals way too much mass from seen items.
- Add-\(\alpha \): better. Optimize \(\alpha \) on held-out data.
- Good-Turing: also better. Estimate probability of \(n \)-count items using \(n + 1 \)-count items.
Remaining problem

• In given corpus, suppose we never observe
 - Scottish beer drinkers
 - Scottish beer eaters

• If we build a trigram model smoothed with Add-α or G-T, which example has higher probability?
Remaining problem

• Previous smoothing methods assign equal probability to all unseen events.

• Better: use information from lower order n-grams (shorter histories).
 - beer drinkers
 - beer eaters

• Two ways: interpolation and backoff
Interpolation

- Higher and lower order n-gram models have different strengths and weaknesses
 - high-order n-grams are sensitive to more context, but have sparse counts
 - low-order n-grams consider only very limited context, but have robust counts

- Combine them

\[
P_I(w_3|w_1, w_2) = \lambda_1 P_1(w_3) + \lambda_2 P_2(w_3|w_2) + \lambda_3 P_3(w_3|w_1, w_2)
\]
Interpolation

- Interpolation parameters must sum to 1:

\[
1 = \sum_{w_3} P_1(w_3|w_1, w_2)
\]

\[
= \sum_{w_3} [\lambda_1 P_1(w_3) + \lambda_2 P_2(w_3|w_2) + \lambda_3 P_3(w_3|w_1, w_2)]
\]

\[
= \lambda_1 \sum_{w_3} P_1(w_3) + \lambda_2 \sum_{w_3} P_2(w_3|w_2) + \lambda_3 \sum_{w_3} P_3(w_3|w_1, w_2)
\]

\[
= \lambda_1 + \lambda_2 + \lambda_3
\]

- In general, weighted combination of distributions is called a **mixture model**
Context-specific Interpolation

- We can trust some histories $w_{i-n+1}, \ldots, w_{i-1}$ more than others (why?)

- Condition interpolation weights on history: $\lambda_{w_{i-n+1},\ldots,w_{i-1}}$

- Interpolation parameters (fixed or context-specific) optimized on held-out data
Back-Off

• Trust the highest order language model that contains n-gram

\[P_{BO}(w_i|w_{i-n+1}, \ldots, w_{i-1}) = \begin{cases}
 P^*(w_i|w_{i-n+1}, \ldots, w_{i-1}) & \text{if count}(w_{i-n+1}, \ldots, w_i) > 0 \\
 \alpha(w_{i-n+1}, \ldots, w_{i-1}) P_{BO}(w_i|w_{i-n+2}, \ldots, w_{i-1}) & \text{else}
\end{cases} \]

• Requires
 – adjusted prediction model \(P^*(w_i|w_{i-n+1}, \ldots, w_{i-1}) \)
 – backoff weights \(\alpha(w_1, \ldots, w_{n-1}) \)
Back-Off with Good-Turing Smoothing

- Good Turing smoothing adjusts counts c to discounted counts c^*

$$\text{count}^*(w_1, w_2) \leq \text{count}(w_1, w_2)$$

- We use c^* for the prediction model (but 0^* remains 0)

$$P^*(w_2|w_1) = \frac{\text{count}^*(w_1, w_2)}{\text{count}(w_1)}$$

- This leaves probability mass for the backoff weight

$$\alpha(w_1) = 1 - \sum_{w_2} P^*(w_2|w_1)$$
Example

• Suppose only 3 words seen following 'a'.

<table>
<thead>
<tr>
<th></th>
<th>c</th>
<th>P_{ML}</th>
<th>c^*</th>
<th>P^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p(\text{big}</td>
<td>a)$</td>
<td>3</td>
<td>$\frac{3}{7} = 0.43$</td>
<td>2.24</td>
</tr>
<tr>
<td>$p(\text{house}</td>
<td>a)$</td>
<td>3</td>
<td>$\frac{3}{7} = 0.43$</td>
<td>2.24</td>
</tr>
<tr>
<td>$p(\text{new}</td>
<td>a)$</td>
<td>1</td>
<td>$\frac{1}{7} = 0.14$</td>
<td>0.446</td>
</tr>
</tbody>
</table>

• $1 - (0.32 + 0.32 + 0.06) = 0.30$ is left for back-off $\alpha(a)$

• Note: actual values for α is slightly higher, since the predictions of the lower-order model to seen events at this level are not used (see J&M 4.7.1).
Diversity of Histories

• Consider the word York
 – fairly frequent word in Europarl corpus, occurs 477 times
 – as frequent as foods, indicates and providers
→ in unigram language model: a respectable probability

• However, it almost always directly follows New (473 times)

• Recall: unigram model only used, if the bigram model inconclusive
 – York unlikely second word in unseen bigram
 – in back-off unigram model, York should have low probability
Kneser-Ney Smoothing

- Kneser-Ney smoothing takes diversity of histories into account
- Count of distinct histories for a word

\[N_{1+}(\bullet w_i) = |\{w_{i-1} : c(w_{i-1}, w_i) > 0\}| \]

- Recall: maximum likelihood estimation of unigram language model

\[P_{ML}(w) = \frac{c(w_i)}{\sum_{w_i} c(w_i)} \]

- In Kneser-Ney smoothing, replace raw counts with count of histories

\[P_{KN}(w_i) = \frac{N_{1+}(\bullet w)}{\sum_{w_i} N_{1+}(\bullet w_i)} \]
Kneser-Ney (Backoff version)

- Uses fixed discount $D < 1$, and backoff to prob based on history diversity.

\[
P_{BKN}(w_i|w_{i-n+1}, \ldots, w_{i-1}) = \begin{cases}
\frac{C(w_i|w_{i-n+1}, \ldots, w_{i-1}) - D}{C(w_i|w_{i-n+2}, \ldots, w_{i-1})} & \text{if} \ \text{count}_{n}(w_{i-n+1}, \ldots, w_i) > 0 \\
\alpha(w_{i-n+1}, \ldots, w_{i-1}) \frac{N_{1+}(w_i|w_{i-n+2}, \ldots, w_{i-1})}{\sum_{w_i} N_{1+}(w_i|w_{i-n+2}, \ldots, w_{i-1})} & \text{else}
\end{cases}
\]
Modified Kneser-Ney (Chen and Goodman, 1998)

- Uses interpolation rather than backoff, with recursive formulation:

\[
P_{MKN}(w_i|w_{i-n+1}, \ldots, w_{i-1}) = \frac{C(w_i|w_{i-n+1}, \ldots, w_{i-1}) - D}{C(w_i|w_{i-n+2}, \ldots, w_{i-1})} + \beta(w_{i-n+1}, \ldots, w_{i-1}) P_{MKN}(w_i|w_{i-n+2}, \ldots, w_{i-1})
\]

where \(\beta\) depends on \(D\) and \(N_{1+}\) counts

- Uses separate \(D\)s for counts of 1, 2, and \(\geq 3\).

- Best smoothing method until recently.
Fig 26 from Chen & Goodman (1998):

normalized performance for each count, 3-gram, 75M words training

diff in test cross-entropy from baseline (bits/token)

-1 0 1 2 3 4 5

count

katz
witten-bell-backoff
abs-disc-interp
jelinek-mercer
kneser-ney
kneser-ney-mod
Word similarity

• Two words with $C(w_1) \gg C(w_2)$
 - salmon
 - swordfish

• Can $P(\text{salmon}|\text{caught two})$ tell us something about $P(\text{swordfish}|\text{caught two})$?

• n-gram models: no.
Word similarity in language modeling

• Early version: class-based language models (J&M 4.9.2)
 – Define classes c of words, by hand or automatically
 – $P_{CL}(w_i|w_{i-1}) = P(c_i|c_{i-1})P(w_i|c_i)$ (an HMM)

• Recent version: distributed language models
 – Current models have better perplexity than MKN.
 – Ongoing research to make them more efficient.
 – Examples: Recursive Neural Network LM (Mikolov et al., 2010), Log Bilinear LM (Mnih and Hinton, 2007) and extensions.
Distributed word representations

- Each word represented as high-dimensional vector (50-500 dims)

 E.g., salmon is $[0.1, 2.3, 0.6, -4.7, \ldots]$

- Similar words represented by similar vectors

 E.g., swordfish is $[0.3, 2.2, 1.2, -3.6, \ldots]$
Which words are similar?

• Appear in similar set of contexts

• Have similar probabilities across those contexts

• Modulo overall differences in unigram frequency
Which vectors are similar?

- Each vector is a point in high-dimensional space

- 2-dimensional example:
Distance measures

- Cosine distance often better for high-dim spaces
- Learned distance functions also possible
Training the model

- n-gram LM: collect counts, maybe optimize some parameters
 - (Relatively) quick, especially these days (minutes-hours)

- distributed LM: learn the representation for each word
 - Solved with machine learning methods (e.g., neural networks)
 - Can be extremely time-consuming (hours-days)
Using the model

Want to compute $P(w_1 \ldots w_n)$ for a new sequence.

- n-gram LM: again, relatively quick

- distributed LM: often prohibitively slow for real applications

- An active area of research for distributed LMs
Other Topics in Language Modeling

Many active research areas in language modeling:

• Factored/morpheme-based language models: back off to word stems, part-of-speech tags, and/or other morphemes in word

• Syntactic language models: using parse trees

• Domain adaptation: when only a small domain-specific corpus is available

• Time efficiency and space efficiency are both key issues (esp on mobile devices!)
Announcements

• Asgn 1 will hit the website this evening. Due two weeks from today, 3pm.

• Office hours: Thursdays 4-5pm.
 – Whoever is lecturing that day will stay in DHT after class to answer questions.
 – If you want to talk to the other lecturer (because your questions pertain to the part of the course they taught) please email ahead.
References

