Recap: Language models

- **Language models** tell us $P(\vec{w}) = P(w_1 \ldots w_n)$: How likely to occur is this sequence of words?
 Roughly: *Is this sequence of words a "good" one in my language?*

Example uses of language models

- Machine translation: reordering, word choice.

 $P_{lm}(\text{the house is small}) > P_{lm}(\text{small the is house})$

 $P_{lm}(\text{I am going home}) > P_{lm}(\text{I am going house})$

 $P_{lm}(\text{We’ll start eating}) > P_{lm}(\text{We shall commence consuming})$

- Speech recognition: word choice:

 $P_{lm}(\text{morphosyntactic analyses}) > P_{lm}(\text{more faux syntactic analyses})$

 $P_{lm}(\text{I put it on today}) > P_{lm}(\text{I putted onto day})$

But: How do systems use this information?

Today’s lecture:

- What is the Noisy Channel framework and what are some example uses?

- What is a language model?

- What is an n-gram model, what is it for, and what independence assumptions does it make?

- What are entropy and perplexity and what do they tell us?

- What’s wrong with using MLE in n-gram models?
Noisy channel framework

- Concept from Information Theory, used widely in NLP
- We imagine that the observed data (output sequence) was generated as:

\[
P(Y) \rightarrow P(X|Y) \rightarrow P(X)
\]

Example: spelling correction

- \(P(Y)\): Distribution over the words (sequences) the user intended to type. A language model.

- \(P(X|Y)\): Distribution describing what user is likely to type, given what they meant. Could incorporate information about common spelling errors, key positions, etc. Call it a noise model.

- \(P(X)\): Resulting distribution over what we actually see.

- Given some particular observation \(x\) (say, effort), we want to recover the most probable \(y\) that was intended.

Noisy channel as probabilistic inference

- Mathematically, what we want is \(\text{argmax}_y P(y|x)\).
 - Read as “the \(y\) that maximizes \(P(y|x)\)”

- Rewrite using Bayes’ Rule:

\[
\text{argmax}_y P(y|x) = \text{argmax}_y \frac{P(x|y)P(y)}{P(x)}
\]

 \[
 = \text{argmax}_y P(x|y)P(y)
 \]
Noisy channel as probabilistic inference

So to recover the best y, we will need

- a **language model** $P(Y)$: relatively task-independent.
- a **noise model** $P(X|Y)$, which depends on the task.
 - acoustic model, translation model, misspelling model, etc.
 - won’t discuss here; see courses on ASR, MT.

Both are normally trained on corpus data.

You may be wondering

If we can train $P(X|Y)$, why can’t we just train $P(Y|X)$? Who needs Bayes’ Rule?

- Answer 1: sometimes we do train $P(Y|X)$ directly. Stay tuned...
- Answer 2: training $P(X|Y)$ or $P(Y|X)$ requires **input/output pairs**, which are often limited:
 - Misspelled words with their corrections; transcribed speech; translated text

 But LMs can be trained on huge unannotated corpora: a better model. Can help improve overall performance.

Estimating a language model

- Y is really a sequence of words $\vec{w} = w_1 \ldots w_n$.
- So we want to know $P(w_1 \ldots w_n)$ for big n (e.g., sentence).
- What will not work: try to directly estimate probability of each full sentence.
 - Say, using MLE (relative frequencies): $C(\vec{w})/(\text{tot # sentences})$.
 - For nearly all \vec{w} (grammatical or not), $C(\vec{w}) = 0$.
 - A **sparse data** problem: not enough observations to estimate probabilities well.

A first attempt to solve the problem

Perhaps the simplest model of sentence probabilities: a **unigram** model.

- Generative process: choose each word in sentence independently.
- Resulting model: $\hat{P}(\vec{w}) = \prod_{i=1}^{n} P(w_i)$
A first attempt to solve the problem

Perhaps the simplest model of sentence probabilities: a \textit{unigram} model.

• Generative process: choose each word in sentence independently.

• Resulting model:
 \[
 \hat{P}(\vec{w}) = \prod_{i=1}^{n} P(w_i)
 \]

• So, \(P(\text{the cat slept quietly}) = P(\text{the quickly cat slept}) \)

\begin{itemize}
 \item Not a \textit{good} model, but still a model.
 \item Of course, \(P(w_i) \) also needs to be estimated!
\end{itemize}

\section*{MLE for unigrams}

• How to estimate \(P(w) \), e.g., \(P(\text{the}) \)?

• Remember that MLE is just relative frequencies:
 \[
 P_{ML}(w) = \frac{C(w)}{W}
 \]

 \(C(w) \) is the token count of \(w \) in a large corpus
 \(W = \sum_{x'} C(x') \) is the total number of word tokens in the corpus.

\section*{Unigram models in practice}

• Seems like a pretty bad model of language: probability of word obviously \textit{does} depend on context.

• Yet unigram (or \textit{bag-of-words}) models are surprisingly useful for some applications.
 \begin{itemize}
 \item Can model "aboutness": topic of a document, semantic usage of a word
 \item Applications: lexical semantics (disambiguation), information retrieval, text classification. (See later in this course)
 \item But, for now we will focus on models that capture at least some syntactic information.
 \end{itemize}
General N-gram language models

Step 1: rewrite using chain rule:

\[P(\vec{w}) = P(w_1 \ldots w_n) = P(w_n|w_1, w_2, \ldots, w_{n-1})P(w_{n-1}|w_1, w_2, \ldots, w_{n-2}) \ldots P(w_1) \]

- Example: \(\vec{w} = \text{the cat slept quietly yesterday} \)

\[P(\text{the, cat, slept, quietly, yesterday}) = \]

\[P(\text{yesterday}|\text{the, cat, slept}) \cdot P(\text{quietly}|\text{the, cat}) \cdot P(\text{slept}|\text{the, cat}) \cdot P(\text{cat}|\text{the}) \cdot P(\text{the}) \]

- But for long sequences, many of the conditional probs are also too sparse!

Trigram independence assumption

- Put another way, a trigram model assumes these are all equal:
 - \(P(\text{slept}|\text{the cat}) \)
 - \(P(\text{slept}|\text{after lunch the cat}) \)
 - \(P(\text{slept}|\text{the dog chased the cat}) \)
 - \(P(\text{slept}|\text{except for the cat}) \)

because all are estimated as \(P(\text{slept}|\text{the cat}) \)

- Not always a good assumption! But it does reduce the sparse data problem.

Another example: bigram model

- Bigram model assumes one word history:

\[P(\vec{w}) = P(w_1) \prod_{i=2}^{n} P(w_i|w_{i-1}) \]

- But consider these sentences:

<table>
<thead>
<tr>
<th></th>
<th>w1</th>
<th>w2</th>
<th>w3</th>
<th>w4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>the</td>
<td>cats</td>
<td>slept</td>
<td>quietly</td>
</tr>
<tr>
<td>(2)</td>
<td>feeds</td>
<td>cats</td>
<td>slept</td>
<td>quietly</td>
</tr>
<tr>
<td>(3)</td>
<td>the</td>
<td>cats</td>
<td>slept</td>
<td>on</td>
</tr>
</tbody>
</table>

- What's wrong with (2) and (3)? Does the model capture these problems?
Example: bigram model

- To capture behaviour at beginning/end of sentence, we need to augment the input:

\[
\begin{align*}
 w_0 & \quad w_1 & \quad w_2 & \quad w_3 & \quad w_4 & \quad w_5 \\
(1) & <s> & \text{the cats slept quietly} & /s> \\
(2) & <s> & \text{feeds cats slept quietly} & /s> \\
(3) & <s> & \text{the cats slept on} & /s>
\end{align*}
\]

- That is, assume \(w_0 = <s> \) and \(w_{n+1} = /s> \) so we have:

\[
P(\vec{w}) = P(w_0) \prod_{i=1}^{n+1} P(w_i|w_{i-1}) = \prod_{i=1}^{n+1} P(w_i|w_{i-1})
\]

Estimating N-Gram Probabilities

- Maximum likelihood (relative frequency) estimation for bigrams:
 - How many times we saw \(w_2 \) following \(w_1 \), out of all the times we saw anything following \(w_1 \):

\[
P_{ML}(w_2|w_1) = \frac{C(w_1, w_2)}{C(w_1, \cdot)} = \frac{C(w_1, w_2)}{C(w_1)}
\]

- Similarly for trigrams:

\[
P_{ML}(w_3|w_1, w_2) = \frac{C(w_1, w_2, w_3)}{C(w_1, w_2)}
\]

- Collect counts over a large text corpus
 - Millions to billions of words are usually easy to get
 - (trillions of English words available on the web)

Evaluating a language model

- Intuitively, trigram model captures more context than bigram model, so should be a “better” model.
- That is, more accurately predict the probabilities of sentences.
- But how can we measure this?
Entropy

- Definition of the entropy of a random variable X:
 \[H(X) = \sum_x -P(x) \log_2 P(x) \]
- Intuitively: a measure of uncertainty/disorder
- Also: the expected value of $-\log_2 P(X)$

Entropy Example

One event (outcome)

\[P(a) = 1 \]
\[H(X) = -1 \log_2 1 \]
\[= 0 \]

Entropy Example

2 equally likely events:

\[P(a) = 0.5 \]
\[P(b) = 0.5 \]
\[H(X) = -0.5 \log_2 0.5 - 0.5 \log_2 0.5 \]
\[= -\log_2 0.5 \]
\[= 1 \]
Entropy Example

4 equally likely events:

\[
P(a) = 0.25 \\
P(b) = 0.25 \\
P(c) = 0.25 \\
P(d) = 0.25
\]

\[
H(X) = - 0.25 \log_2 0.25 - 0.25 \log_2 0.25 - 0.25 \log_2 0.25 - 0.25 \log_2 0.25
\]

\[
= - \log_2 0.25 \\
= 2
\]

Entropy Example

3 equally likely events and one much more likely than the others:

\[
P(a) = 0.7 \\
P(b) = 0.1 \\
P(c) = 0.1 \\
P(d) = 0.1
\]

\[
H(X) = - 0.7 \log_2 0.7 - 0.1 \log_2 0.1 - 0.1 \log_2 0.1
\]

\[
= - 0.7 \log_2 0.7 - 0.3 \log_2 0.1
\]

\[
= - (0.7)(-0.5146) - (0.3)(-3.3219)
\]

\[
= 0.36020 + 0.99658
\]

\[
= 1.35678
\]

Entropy Example

3 equally likely events and one more likely than the others:

\[
P(a) = 0.97 \\
P(b) = 0.01 \\
P(c) = 0.01 \\
P(d) = 0.01
\]

\[
H(X) = - 0.97 \log_2 0.97 - 0.01 \log_2 0.01 - 0.01 \log_2 0.01 - 0.01 \log_2 0.01
\]

\[
= - 0.97 \log_2 0.97 - 0.03 \log_2 0.01
\]

\[
= - (0.97)(-0.04394) - (0.3)(-6.64)
\]

\[
= 0.04262 + 0.19932
\]

\[
= 0.24194
\]

Entropy take-aways

Entropy of a uniform distribution over \(N \) outcomes is \(\log_2 N \):

\[
H(X) = 0 \quad H(X) = 1 \quad H(X) = 2 \quad H(X) = 3 \quad H(X) = 2.585
\]
Entropy take-aways

Any non-uniform distribution over \(N \) outcomes has lower entropy than the corresponding uniform distribution:

\[
H(X) = 2 \quad H(X) = 1.35678 \quad H(X) = 0.24194
\]

Entropy as y/n questions

How many yes-no questions (bits) do we need to find out the outcome?

- Uniform distribution with \(2^n \) outcomes: \(n \) q’s.
- Other cases: entropy is the average number of questions per outcome in a (very) long sequence of outcomes, where questions can consider multiple outcomes at once.

Entropy as encoding sequences

- Assume that we want to encode a sequence of events \(X \)
- Each event is encoded by a sequence of bits
- For example
 - Coin flip: heads = 0, tails = 1
 - 4 equally likely events: a = 00, b = 01, c = 10, d = 11
 - 3 events, one more likely than others: a = 0, b = 10, c = 11
 - Morse code: e has shorter code than q
- Average number of bits needed to encode \(X \) \(\geq \) entropy of \(X \)

The Entropy of English

- Given the start of a text, can we guess the next word?
- Humans do pretty well: the entropy is only about 1.3.
- But what about \(N \)-gram models?
 - Ideal language model would match the true entropy of English.
 - The closer we get to that, the better the model.
 - Put another way, a good model assigns high prob to real sentences (and low prob to everything else).
How good is the LM?

- **Cross entropy** measures how well model M predicts the data.

- For data $w_1 \ldots w_n$ with large n, well approximated by:

$$H_M(w_1 \ldots w_n) = -\frac{1}{n} \log_2 P_M(w_1 \ldots w_n)$$

 - Avg neg log prob our model assigns to each word we saw

- Or, **perplexity**:
 $$PP_M(\vec{w}) = 2^{H_M(\vec{w})}$$

 - 1 over the geometric average of the probabilities of each w_i.

- But in practice, when computing perplexity for long sequences, we use the version with logs (see week 3 lab for reasons...)

Example: trigram (Europarl)

<table>
<thead>
<tr>
<th>prediction</th>
<th>P_{ML}</th>
<th>$-\log_2 P_{ML}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{ML}(i</td>
<td></s><s>)$</td>
<td>0.109</td>
</tr>
<tr>
<td>$P_{ML}(would</td>
<td><s>i)$</td>
<td>0.144</td>
</tr>
<tr>
<td>$P_{ML}(like</td>
<td>would)$</td>
<td>0.489</td>
</tr>
<tr>
<td>$P_{ML}(to</td>
<td>would like)$</td>
<td>0.905</td>
</tr>
<tr>
<td>$P_{ML}(commend</td>
<td>like to)$</td>
<td>0.002</td>
</tr>
<tr>
<td>$P_{ML}(the</td>
<td>to commend)$</td>
<td>0.472</td>
</tr>
<tr>
<td>$P_{ML}(rapporteur</td>
<td>commend the)$</td>
<td>0.147</td>
</tr>
<tr>
<td>$P_{ML}(on</td>
<td>the rapporteur)$</td>
<td>0.056</td>
</tr>
<tr>
<td>$P_{ML}(his</td>
<td>rapporteur on)$</td>
<td>0.194</td>
</tr>
<tr>
<td>$P_{ML}(work/on his)$</td>
<td>0.089</td>
<td>3.498</td>
</tr>
<tr>
<td>$P_{ML}(his</td>
<td>work)$</td>
<td>0.290</td>
</tr>
<tr>
<td>$P_{ML}(</s></td>
<td>work .)$</td>
<td>0.99999</td>
</tr>
<tr>
<td>average</td>
<td></td>
<td>2.634</td>
</tr>
</tbody>
</table>

Comparison: 1–4-Gram

<table>
<thead>
<tr>
<th>word</th>
<th>unigram</th>
<th>bigram</th>
<th>trigram</th>
<th>4-gram</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>6.684</td>
<td>3.197</td>
<td>3.197</td>
<td>3.197</td>
</tr>
<tr>
<td>would</td>
<td>8.342</td>
<td>2.884</td>
<td>2.791</td>
<td>2.791</td>
</tr>
<tr>
<td>like</td>
<td>9.129</td>
<td>2.026</td>
<td>1.031</td>
<td>1.290</td>
</tr>
<tr>
<td>to</td>
<td>5.081</td>
<td>0.402</td>
<td>0.144</td>
<td>0.113</td>
</tr>
<tr>
<td>commend</td>
<td>15.487</td>
<td>12.335</td>
<td>8.794</td>
<td>8.633</td>
</tr>
<tr>
<td>the</td>
<td>3.885</td>
<td>1.402</td>
<td>1.084</td>
<td>0.880</td>
</tr>
<tr>
<td>rapporteur</td>
<td>10.840</td>
<td>7.319</td>
<td>2.763</td>
<td>2.350</td>
</tr>
<tr>
<td>on</td>
<td>6.765</td>
<td>4.140</td>
<td>4.150</td>
<td>1.862</td>
</tr>
<tr>
<td>his</td>
<td>10.678</td>
<td>7.316</td>
<td>2.350</td>
<td>1.786</td>
</tr>
<tr>
<td>work</td>
<td>9.993</td>
<td>4.816</td>
<td>3.495</td>
<td>2.394</td>
</tr>
<tr>
<td>.</td>
<td>4.896</td>
<td>3.020</td>
<td>1.785</td>
<td>1.978</td>
</tr>
<tr>
<td></s></td>
<td>4.828</td>
<td>0.005</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>average</td>
<td>8.051</td>
<td>4.072</td>
<td>2.634</td>
<td>2.251</td>
</tr>
<tr>
<td>perplexity</td>
<td>265.136</td>
<td>16.817</td>
<td>6.206</td>
<td>4.758</td>
</tr>
</tbody>
</table>
Unseen N-Grams

- What happens when I try to compute $P(\text{consuming}|\text{shall commence})$?
 - Assume we have seen shall commence in our corpus
 - But we have never seen shall commence consuming in our corpus

$\rightarrow P(\text{consuming}|\text{shall commence}) = 0$

- Any sentence with shall commence consuming will be assigned probability 0

The guests shall commence consuming supper
Green inked shall commence consuming garden the

The problem with MLE

- MLE estimates probabilities that make the observed data maximally probable
- by assuming anything unseen cannot happen (and also assigning too much probability to low-frequency observed events).
- It **over-fits** the training data.
- We tried to avoid zero-probability sentences by modelling with smaller chunks (n-grams), but even these will sometimes have zero prob under MLE.

Next time: **smoothing** methods, which reassign probability mass from observed to unobserved events, to avoid overfitting/zero probs.

Questions for review:

- What is the Noisy Channel framework and what are some example uses?
- What is a language model?
- What is an n-gram model, what is it for, and what independence assumptions does it make?
- What are entropy and perplexity and what do they tell us?
- What's wrong with using MLE in n-gram models?