Language models

- **Language models** answer the question:

 \[\text{How likely is a string of English words good English?} \]

- Help with reordering

 \[p_{\text{LM}}(\text{the house is small}) > p_{\text{LM}}(\text{small the is house}) \]

- Help with word choice

 \[p_{\text{LM}}(\text{I am going home}) > p_{\text{LM}}(\text{I am going house}) \]

N-Gram Language Models

- Given: a string of English words \(W = w_1, w_2, w_3, ..., w_n \)
- Question: what is \(p(W) \)?
- Sparse data: Many good English sentences will not have been seen before

 \[p(w_1, w_2, w_3, ..., w_n) = p(w_1) p(w_2|w_1) p(w_3|w_1, w_2) ... p(w_n|w_1, w_2, ..., w_{n-1}) \]

 (not much gained yet, \(p(w_n|w_1, w_2, ..., w_{n-1}) \) is equally sparse)

Markov Chain

- **Markov assumption:**

 - only previous history matters
 - limited memory: only last \(k \) words are included in history

 (older words less relevant)

 \(k \)-th order Markov model

- For instance 2-gram language model:

 \[p(w_1, w_2, w_3, ..., w_n) \approx p(w_1) p(w_2|w_1) p(w_3|w_2) ... p(w_n|w_{n-1}) \]

 - What is conditioned on, here \(w_{i-1} \) is called the **history**
Estimating N-Gram Probabilities

- Maximum likelihood estimation
 \[p(w_2|w_1) = \frac{\text{count}(w_1, w_2)}{\text{count}(w_1)} \]
- Collect counts over a large text corpus
- Millions to billions of words are easy to get (trillions of English words available on the web)

Example: 3-Gram

- Counts for trigrams and estimated word probabilities

<table>
<thead>
<tr>
<th>The green (total: 1748)</th>
<th>The red (total: 225)</th>
<th>The blue (total: 54)</th>
</tr>
</thead>
<tbody>
<tr>
<td>word</td>
<td>c.</td>
<td>prob.</td>
</tr>
<tr>
<td>paper</td>
<td>801</td>
<td>0.458</td>
</tr>
<tr>
<td>group</td>
<td>640</td>
<td>0.367</td>
</tr>
<tr>
<td>light</td>
<td>110</td>
<td>0.063</td>
</tr>
<tr>
<td>party</td>
<td>27</td>
<td>0.015</td>
</tr>
<tr>
<td>ecu</td>
<td>21</td>
<td>0.012</td>
</tr>
</tbody>
</table>

- 225 trigrams in the Europarl corpus start with **the red**
- 123 of them end with **cross**
- maximum likelihood probability is \(\frac{123}{225} = 0.547 \).

How good is the LM?

- A good model assigns a text of real English \(W \) a high probability
- This can be also measured with cross entropy:
 \[H(W) = \frac{1}{n} \log p(W^n) \]
- Or, perplexity
 \[\text{perplexity}(W) = 2^H(W) \]
Comparison 1–4-Gram

<table>
<thead>
<tr>
<th>word</th>
<th>unigram</th>
<th>bigram</th>
<th>trigram</th>
<th>4-gram</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>6.684</td>
<td>3.197</td>
<td>3.197</td>
<td>3.197</td>
</tr>
<tr>
<td>would</td>
<td>8.342</td>
<td>2.884</td>
<td>2.791</td>
<td>2.791</td>
</tr>
<tr>
<td>like</td>
<td>9.129</td>
<td>2.026</td>
<td>1.031</td>
<td>1.290</td>
</tr>
<tr>
<td>to</td>
<td>5.081</td>
<td>0.402</td>
<td>0.144</td>
<td>0.113</td>
</tr>
<tr>
<td>commend</td>
<td>15.487</td>
<td>12.335</td>
<td>8.794</td>
<td>8.633</td>
</tr>
<tr>
<td>the</td>
<td>3.885</td>
<td>1.402</td>
<td>1.084</td>
<td>0.880</td>
</tr>
<tr>
<td>rapporteur</td>
<td>10.840</td>
<td>7.319</td>
<td>2.763</td>
<td>2.350</td>
</tr>
<tr>
<td>on</td>
<td>6.765</td>
<td>4.140</td>
<td>4.150</td>
<td>1.862</td>
</tr>
<tr>
<td>his</td>
<td>10.678</td>
<td>7.316</td>
<td>2.367</td>
<td>1.978</td>
</tr>
<tr>
<td>work</td>
<td>9.993</td>
<td>4.816</td>
<td>3.498</td>
<td>2.394</td>
</tr>
<tr>
<td>.</td>
<td>4.896</td>
<td>3.020</td>
<td>1.785</td>
<td>1.510</td>
</tr>
<tr>
<td></s></td>
<td>4.828</td>
<td>0.005</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>average</td>
<td>8.051</td>
<td>4.072</td>
<td>2.634</td>
<td>2.251</td>
</tr>
<tr>
<td>perplexity</td>
<td>265.136</td>
<td>16.817</td>
<td>6.206</td>
<td>4.758</td>
</tr>
</tbody>
</table>

Unseen N-Grams
- We have seen *i like to* in our corpus
- We have never seen *i like to smooth* in our corpus

\[p(\text{smooth}|i \text{ like to}) = 0 \]

- Any sentence that includes *i like to smooth* will be assigned probability 0

Add-One Smoothing
- For all possible bigrams, add the count of one.

\[p = \frac{c + 1}{n + v^2} \]

- \(c \) = count of n-gram in corpus
- \(n \) = count of history
- \(v \) = vocabulary size

- But there are many more unseen n-grams than seen n-grams
- Example: Europarl 2-bigrams:
 - \(v \) = 86,700 distinct words
 - \(v^2 \) = 86,700\(^2\) = 7,516,890,000 possible bigrams
 - but only about \(n \) = 30,000,000 words (and bigrams) in corpus

Add-\(\alpha \) Smoothing
- Add \(\alpha < 1 \) to each count

\[p = \frac{c + \alpha}{n + \alpha v^2} \]

- What is a good value for \(\alpha \)?
- Could be optimized on held-out set
Adjusted Counts

- Previously, we estimated probabilities based on actual counts
 \[p = \frac{c}{n} \]

- Now, we change the formula to estimate smoothed probabilities
 \[p_{\text{smoothed}} = \frac{c + 1}{n + v^2} \]

- Another view: we adjusted the counts
 \[p_{\text{smoothed}} = \frac{c^*}{n} \Rightarrow c^* = n p_{\text{smoothed}} = (c + 1) \frac{n}{n + v^2} \]

Good-Turing Smoothing

- Adjust actual counts \(c \) to expected counts \(c^* \) with formula
 \[c^* = (c + 1) \frac{N_{c+1}}{N_c} \]
 - \(N_c \) number of n-grams that occur exactly \(c \) times in corpus
 - \(N_0 \) total number of unseen n-grams

Example: 2-Grams in Europarl

<table>
<thead>
<tr>
<th>Count</th>
<th>Count of counts</th>
<th>Adjusted count</th>
<th>Test count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7,514,941,065</td>
<td>0.00015</td>
<td>0.00016</td>
</tr>
<tr>
<td>1</td>
<td>1,132,844</td>
<td>0.46539</td>
<td>0.46235</td>
</tr>
<tr>
<td>2</td>
<td>263,611</td>
<td>1.40679</td>
<td>1.39946</td>
</tr>
<tr>
<td>3</td>
<td>123,615</td>
<td>2.38767</td>
<td>2.34307</td>
</tr>
<tr>
<td>4</td>
<td>73,788</td>
<td>3.33753</td>
<td>3.35202</td>
</tr>
<tr>
<td>5</td>
<td>49,254</td>
<td>4.36967</td>
<td>4.35234</td>
</tr>
<tr>
<td>6</td>
<td>35,869</td>
<td>5.32928</td>
<td>5.33762</td>
</tr>
<tr>
<td>8</td>
<td>21,693</td>
<td>7.43798</td>
<td>7.15074</td>
</tr>
<tr>
<td>10</td>
<td>14,880</td>
<td>9.31304</td>
<td>9.11927</td>
</tr>
<tr>
<td>20</td>
<td>4,546</td>
<td>19.54487</td>
<td>18.95948</td>
</tr>
</tbody>
</table>

adjusted count fairly accurate when compared against the test count

- Add-\(\alpha \) smoothing with \(\alpha = 0.00017 \)
- \(t_c \) are average counts of n-grams in test set that occurred \(c \) times in corpus
Derivation of Good-Turing

- A specific n-gram α occurs with (unknown) probability p in the corpus
- Assumption: all occurrences of an n-gram α are independent of each other
- Number of times α occurs in corpus follows binomial distribution

$$p(c(\alpha) = r) = b(r; N, p) = \binom{N}{r} p^r (1-p)^{N-r}$$

Derivation of Good-Turing (2)

- Goal of Good-Turing smoothing: compute expected count c^*
- Expected count can be computed with help from binomial distribution:

$$E(c^*(\alpha)) = \sum_{r=0}^{N} r \cdot p(c(\alpha) = r) = \sum_{r=0}^{N} r \binom{N}{r} p^r (1-p)^{N-r}$$

- Note again: p is unknown, we cannot actually compute this

Derivation of Good-Turing (3)

- Definition: expected number of n-grams that occur r times: $E_N(N_r)$
- We have s different n-grams in corpus
 - let us call them $\alpha_1, ..., \alpha_s$
 - each occurs with probability $p_1, ..., p_s$, respectively
- Given the previous formulae, we can compute

$$E_N(N_r) = \sum_{i=1}^{s} p(c(\alpha_i) = r) = \sum_{i=1}^{s} \binom{N}{r} p_i^r (1-p_i)^{N-r}$$

- Note again: p_i is unknown, we cannot actually compute this

Derivation of Good-Turing (4)

- Reflection
 - we derived a formula to compute $E_N(N_r)$
 - we have N_r
 - for small r: $E_N(N_r) \simeq N_r$
- Ultimate goal compute expected counts c^*, given actual counts c

$$E(c^*(\alpha)|c(\alpha) = r)$$
Derivation of Good-Turing (5)

- For a particular n-gram α, we know its actual count r.
- Any of the n-grams α_i may occur r times.
- Probability that α is one specific α_i:
 \[
 p(\alpha = \alpha_i | c(\alpha) = r) = \frac{p(c(\alpha_i) = r)}{\sum_{j=1}^{s} p(c(\alpha_j) = r)}
 \]
- Expected count of this n-gram α:
 \[
 E(c^*(\alpha) | c(\alpha) = r) = \sum_{i=1}^{s} N p_i p(\alpha = \alpha_i | c(\alpha) = r)
 \]

Derivation of Good-Turing (6)

- Combining the last two equations:
 \[
 E(c^*(\alpha) | c(\alpha) = r) = \sum_{i=1}^{s} N p_i p(c(\alpha_i) = r) / \sum_{j=1}^{s} p(c(\alpha_j) = r)
 \]
- We will now transform this equation to derive Good-Turing smoothing.

Derivation of Good-Turing (7)

- Repeat:
 \[
 E(c^*(\alpha) | c(\alpha) = r) = \sum_{i=1}^{s} N p_i p(c(\alpha_i) = r) / \sum_{j=1}^{s} p(c(\alpha_j) = r)
 \]
- Denominator is our definition of expected counts $E_N(N_r)$.

Derivation of Good-Turing (8)

- Numerator:
 \[
 \sum_{i=1}^{s} N p_i p(c(\alpha_i) = r) = \sum_{i=1}^{s} N p_i \left(\frac{N}{r} \right)^r \left(1 - p_i \right)^{N-r}
 \]
 \[
 = \sum_{i=1}^{s} N p_i \frac{N!}{r!} p_i^{r+1} \left(1 - p_i \right)^{N-r}
 \]
 \[
 = \left(r + 1 \right) \frac{N + 1}{N + r} E_{N+1}(N_{r+1})
 \]
 \[
 \simeq (r + 1) E_{N+1}(N_{r+1})
 \]
Derivation of Good-Turing (9)

- Using the simplifications of numerator and denominator:

\[r^* = E(c^*(\alpha)|c(\alpha) = r) = \frac{(r + 1) E_{N+1}(N_{r+1})}{E_N(N_r)} \approx (r + 1) \frac{N_{r+1}}{N_r} \]

- QED