
Accelerated Natural Language
Processing 2016

Lecture 15: Probabilistic CF-PSGs,
best-first parsing

Henry S. Thompson
20 October 2016

1. The active chart
The Earley algorithm (see Jurafsky and Martin) was the first one to put hypotheses, that is,
partial constituents, into the chart

We'll look at chart parsing

• Originally described by Martin Kay
• It's the most general and can be configured to emulate the others
• And lots more besides

It distinguishes between

inactive edges
which represent complete constituents, including pointers to the edges representing their
children

active edges
which represent incomplete constituents, the labels required to complete them, and their
substructure so far, if any

2. Chart parsing basics
Two basic components:

• The chart
• The agenda

The chart is composed of edges and vertices

In its simplest form, the agenda is just a LIFO or FIFO queue of edges

Edges come off the agenda and into the chart one at a time

• And the addition of an edge to the chart may create new edges, which go back on the
agenda

• The parse is over when the agenda is empty

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en

3. Chart parsing: More on edges
Active edges consist of a dotted rule, a sequence of descendants and a start and endpoint

• A dotted rule is a CF-PSG rule with a dot, indicating progress towards satisfaction

S → NP VP

VP → Vt NP

Inactive edges consist of a label, a sequence of descendants and a start and end point

4. Chart parsing: where do edges come from?
The fundamental rule of chart parsing:

• When an active and inactive edge meet for the first time, try to satisfy the active edge
with the inactive edge

An active edge meets an inactive one if the active edge's endpoint is the same as the inactive
edge's start point

An inactive edge satisfies an active edge if its label matches the next symbol after the dot in
the active edge's dotted rule

If you win, add a new edge

• from the start of the active edge
• to the end of the inactive edge
• If that was the last thing the active edge needed the result is inactive
• Otherwise it's active, with the dot moved along one

5. Chart parsing basics, cont'd
Also, we have rule invocation strategies:

top-down
When an active edge is added to the chart, add new empty (looping) active edges at its
end for each rule in the grammar which expands the symbol after the dot

• That is, edges which might result in what is needed next
bottom-up

When an inactive edge is added to the chart, add empty active edges at its start for every
rule in the grammar whose first symbol on the RHS matches the label of the edge

• That is, edges which might make use of what was just found
• This is where the name left-corner comes in

For bottom-up parsing, just adding the lexical edges will get us started

For top-down parsing, we need to add active edges for S at the beginning

LIFO vs. FIFO queuing determine depth- vs. breadth-first search

6. Chart parsing worked example
We can work through an example of parsing a trivial phrase ("the dog") with a trivial grammar,
using a bottom-up, depth-first approach

Depth-first means we do LIFO queuing

A new inactive edge in the chart: we check the grammar

Active meets inactive for the first time -- the fundamental rule is tried

And succeeds

New inactive edge: we check the grammar

Active met inactive again also, but didn't match

New active means two instances of the fundamental rule to check

One wins, giving us our first partial constituent

Finally we go back to the first entry in the agenda

7. Chart entries: reconstructing rules
Including subconstituent pointers allows us to reconstruct the rule that enabled a cell entry

• Or rules

So if we have two VP rules:

VP → V NP

VP → VP PP

The chart will show us both ways to get the VP from an ambiguous input:

8. Chart parsing and left recursion
Recursive-descent parsers have a problem with left-recursive rules:

NP → NP PP

NP → Det Nom Det → NP 's

Because the chart records hypotheses as well as results

• It's easy to avoid redundant hypotheses
• By not adding (empty, active) edges to the chart if an identical one is already there

9. Ambiguity is still the problem
Features help express the grammar neatly, but they don't change the ambiguity problem

Chart parsing gives us flexibility, but that doesn't solve the ambiguity problem

Examples of ambiguity:

global
PP attachment

“One morning I shot an elephant in my pyjamas ...” (Groucho Marx)

gerundive VP attachment

We saw penguins flying over Antarctica

coordination

hot tea and coffee

vs

empty bottles and fag-ends

10. Compositional semantics, again
The significance of attachment ambiguity is clear when we look at semantics

Back to our simple grammar for Python arithmetic expressions:

Expr → Expr Op Expr | Var | Number
Op → '+' | '-' | '*' | '/'

Assuming some more work to tokenise the input, this will give us two analyses for the string
"x/y+1":

We see that the difference in attachment makes a very real difference

We call that kind of semantic computation a compositional one

"The meaning of the whole [constituent] is a function of the meaning of the parts
[children]"

11. Compositional semantics, cont'd
How does this relate to natural language?

• Many approaches to language understanding proceed in a similar way
◦ In what's called a rule-to-rule way
◦ Associating a (compositional) semantic rule with each syntactic rule

So, for example, for the kind of PP attachment ambiguity we keep encountering

If we associate the appropriate computation with each production
◦ (skipping a lot of details here, some of which will be covered in a few weeks)
◦ And assuming that x is 4 and y is 1

• Where the PP is attached determines where its semantic contribution is made

In other words, with respect to "saw the child with the telescope"

VP → V NP, NP → NP PP
The semantics of the PP contributes to the semantics of the (higher) NP

• The child has the telescope

VP → VP PP
The semantics of the PP contributes to the semantics of the (higher) VP

• The seeing was done with the telescope

12. Back to ambiguity
We need a way to choose the best analysis from among many

• Very many
• The average sentence in the Wall Street Journal dataset we used in lab on Tuesday is

just under 26 words long
• The exponential consequence of multiple local ambiguities given a broad-coverage CF-

PSG
• Will be 1000s, if not 100s of 1000s, of parses

And we need a sound basis for ranking these

A gold standard provides at least partial solutions. . .

13. Treebanks: big investment, big reward
Mitch Marcus at the Univ. of Pennsylvania took this seriously

• As did the US DARPA (Defense Advanced Research Projects Agency)
◦ In the context of their evaluation-led research funding approach

The Penn Treebank project was launched in 1989

• Over a number of phases has annotated many datasets, including
◦ the Brown Corpus, WSJ data, air-travel request data, phone conversation data

• and has spawned many follow-ons for other languages

14. Treebank examples and evolution
The first release contained 'skeletal' parses, that is, simple syntactic trees

• With a few quirks based on a choice of underlying grammatical theory

• Now somewhat dated, this mostly involves the use of what are called traces to
indicate 'missing' material

• For example in relative clauses and some complement clauses
◦ "I liked the show that we watched * last night"
◦ "Robin found it difficult to * lift the boxes"

Here's an example:

(S
(NP

(ADJP Battle-tested Japanese industrial)
managers)

here always
(VP buck up

(NP nervous newcomers)
(PP with

(NP the tale
(PP of

(NP the
(ADJP first

(PP of
(NP their countrymen)))

(S (NP *)
to
(VP visit

(NP Mexico)))))))))

This annotation was produced by manually correcting the output of a simple chunking parser,
then removing the POS-tags and some NP-internal structure

15. Penn Treebank, mark two
The second release added much more information, including some predicate-argument
indications:

(S (NP-SBJ (NP Battle-tested Japanese industrial managers)
(ADVP-LOC here))

(ADVP-TMP always)
(VP buck

(PRT up)
(NP nervous newcomers)
(PP-CLR with

(NP (NP the tale)
(PP of

(NP (NP the
first)

(PP of
(NP their countrymen))

(SBAR (WHNP-1 0)
(S (NP-SBJ *T*-1)

(VP to
(VP visit

(NP Mexico)))))))))))

16. Deriving a grammar from a treebank
Trivial, really

For every node in every tree with non-lexical children

• Add a rule to the grammar (or increment the count of an existing rule)
• NodeLab → Child1Lab Child2Lab . . .

So, for the tree in the previous slide, we'd get e.g.

NP-SBJ → NP ADVP-LOC
NP → NP PP
NP → NP PP SBAR

The result is guaranteed to give at least one parse to every sentence in the Treebank

17. Simple Probabilistic CF-PSGs
Given a treebank, we can easily compute a simple kind of probabilistic grammar

• Either directly with respect to treebank-derived rules
• Or by mapping from treebank statistics to some other ruleset

For a treebank-derived ruleset, the maximum likelihood probability estimate is simple:

P(NT → C1C2 ...Cn | NT) =
count(NT → C1C2 ...Cn)

count(NT)

So, for example, given that in the NLTK treebank subset, there are 52041 subtrees labelled S

And in 29201 of these there are exactly two children of S, labelled NP-SBJ followed by VP, we
get

P(S → NP-SBJ VP | S) = 29201
52041 = 0.56

The probability of a whole parse tree is then just the product of the probabilities of every non-
terminal node in that tree

• Or we can use the sum of the costs for simpler calculations
◦ Recall that costs are negative log probabilities
◦ We sum them, instead of multiplying
◦ And prefer lower costs (== higher probabilities)

It's not hard to modify a chart parser to use probabilities to actually guide parsing

• So that you get the most likely parse first
• By maintaining the agenda in sorted order
• And always taking the most probable agenda entry to put in the chart next

18. Evaluation against a treebank
No-one's grammatical theory/detailed grammar is going to give exactly the same results as a
treebank

• Unless it's derived automatically from the treebank

So how do you evaluate a parser against a treebank?

It turns out just looking at major constituent boundaries is surprisingly good

• Basically, because most parsers are pretty bad

The same (D)ARPA push towards evaluation-driven funding drove the development of the
PARSEVAL metric

PARSEVAL just compares bracketings, without regard to labels

• In its simplest form, it just counts parenthesis-crossing
◦ (A (B C)) vs. ((A B) C)
◦ Fewer is better

• And constituent recall
◦ (A B C) vs. (A (B C))
◦ More is better

Each of these is effectively penalising an attachment mistake

19. PARSEVAL examples

(saw (a child with a telescope))

will be penalised wrt

(saw (a child) (with a telescope))

• by the second rule above, because of the mismatch in number of sub-constituents

((hot tea) and coffee)

will be penalised wrt

(hot (tea and coffee))

• because of the crossing parentheses

	Accelerated Natural Language Processing 2016
	Lecture 15: Probabilistic CF-PSGs, best-first parsing
	1. The active chart
	2. Chart parsing basics
	3. Chart parsing: More on edges
	4. Chart parsing: where do edges come from?
	5. Chart parsing basics, cont'd
	6. Chart parsing worked example
	7. Chart entries: reconstructing rules
	8. Chart parsing and left recursion
	9. Ambiguity is still the problem
	10. Compositional semantics, again
	11. Compositional semantics, cont'd
	12. Back to ambiguity
	13. Treebanks: big investment, big reward
	14. Treebank examples and evolution
	15. Penn Treebank, mark two
	16. Deriving a grammar from a treebank
	17. Simple Probabilistic CF-PSGs
	18. Evaluation against a treebank
	19. PARSEVAL examples

