1. Taking a step back

The first three weeks have introduced the concept of a language model

- Of the information theoretic variety

Along with a number of other key technologies and methodologies:

- Finite state machines and transducers
- N-gram models
- Hidden Markov models
- Viterbi search and friends
- Smoothing and interpolation

These all find a place in systems we can understand in terms of the noisy channel model

- Or, perhaps more accurately, metamodell

Where we’re headed next moves away, at least temporarily, from that narrative

2. Our complex history

The present state of NLP can be understood best by reference to the history of the computational encounter with natural language

First closely parallel to, latterly increasingly separated from, the history of linguistic theory since 1960

Situated in relation to the complex interactions between linguistics, psychology and computer science:
Originally all the computational strands except the 'in service to' ones were completely invested in the Chomskian rationalist perspective

- With a corresponding commitment to
 - formal systems
 - representationalist theories of mind
 - so-called 'strong AI'

3. An aside about hyphenated disciplines

Interdisciplinary work runs the risk of mistaking its hyphen for a license to make up the rules

- That is, to more-or-less ignore the normative structure of either of the contributing disciplines

But this just results in a loss of credibility

- From both sides

So actually much more so than unhyphenated practitioners

- Computational linguists of whatever variety have to be very explicit about the rules they are working by

4. Linguistics + Computing

Computational linguistics initially drew heavily on 20th-century linguistics

So drew extensively on algebra, logic and set theory:

- Already well established in formal language theory
 - Turing, Church, Tarski
- Adopted and significantly developed by computer scientists for use in compilers
 - Aho, Hopcroft, Ullman
- Exploited for natural language analysis
 - Chomsky, Montague

Then added parsing and 'reasoning' algorithms to grammars and logical models
5. The empir[icist] strikes back

Starting in the late 1970s, in the research community centred around the (D)ARPA-funded Speech Understanding Research effort, with its emphasis on evaluation and measurable progress, things began to change.

(D)ARPA funding significantly expanded the amount of digitised and transcribed speech data available to the research community.

Instead of systems whose architecture and vocabulary were based on linguistic theory (in this case acoustic phonetics), new approaches based on statistical modelling and Bayesian probability emerged and quickly spread.

Every time I fire a linguist my system's performance improves

Fred Jellinek, head of speech recognition at IBM, c. 1980 (allegedly)

6. It all started with speech recognition

The speech signal under-determines what we 'hear'

- By the late 1970s, this was regularly thought of in terms of a lattice of possible words with varying degrees of support from the acoustic evidence
- Consider for example this short utterance

You heard:

recognise

But I said:

wreck

And there are more possibilities:
7. Speech recognition, cont'd

So how do we select the right path through the word lattice?

Is it on the basis of a small number of powerful things, like grammar rules and mappings from syntax trees to semantics?

Or a large number of very simple things, like word and bigram frequencies?
In practice, the probability-based approach performs much better than the rule-based approach.

8. Up the speech chain

The publication of 6 years of digital originals of the Wall Street Journal in 1991 provided the basis for moving the Bayesian approach up the speech chain to morphology and syntax.

Many other corpora have followed, not just for American English.

And the Web itself now provides another huge jump in the scale of resources available.

To the point where even semantics is at least to some extent on the probabilistic empiricist agenda.

9. The new intellectual landscape

Whereas in the 1970s and 1980s there was real energy and optimism at the interface between computational and theoretical linguistics:

- by the end of the century, the overwhelming success of the empiricist programme in the applied domain had separated them once again.

While still using some of the terminology of linguistic theory:

- computational linguistics practitioners became increasingly detached from theory itself.
- And theory suffered a, perhaps connected, loss of energy and sense of progress.

Within cognitive psychology, significant energy began going in to erecting a theoretical stance consistent with at least some of the new empiricist perspective.

But the criticism voiced 35 years ago by Herb Clark, who described cognitive psychology as "a methodology in search of a theory", remains pretty accurate.
And within computer science in general, and Artificial Intelligence in particular, the interest in "probably nearly correct" solutions, as opposed to constructively true ones, is dominant.

Even philosophy of mind has begun to explore a Bayesian perspective.

10. The even newer landscape

Some aspects of the rationalist programme have been making a bit of a comeback

- Of course, in some sub-disciplines they never completely disappeared

One reason for this is very concrete:

- The volume of language data required to train really good e.g. n-gram models is enormous
- And out of reach for all but a handful of languages
 - There just isn't enough Portuguese or Swahili
 - To say nothing of Telugu or Inupiak

So noisy channel architecture systems will struggle to handle most of the world's languages.

There's another area where data scarcity is relevant too

- That is, human language acquisition
- Children's exposure to language is measured in small numbers of millions of words
- Not enough to provide an accurate language model

11. Reasons to love trees

Parse trees, that is

They're a means to at least three distinct ends:

- A satisfactory explanatory account of the nature of human language
- A useful scaffolding for semantics
- A remedy for the sparse data problem

12. The nature of human language

Two related perspectives:

Artefactual

- The original structuralist question
 - What is the nature of a particular human language?
 - Considered as a set of utterances/sentences
 - Or, what is distinctive about human languages in general?

Psychological

- The linguistic component of cognitive psychology
 - What underlies mature human linguistic performance?
 - How does that arise throughout child development?

13. From structuralism to generative grammar

Building on, and extending, formal language theory, Chomsky (re)defined the scientific study of language.
Warning! His rationalist rhetoric ("what do people know about their language") and his technical vocabulary ("generative grammar") encourages a misunderstanding

- That his goal is a model of human language processing

But his actual goal is to characterise what people know

- Not how they know it

Generative grammar is 'generative' because it defines a language as the set of strings *generated* by a specified formal procedure

- Not because it describes the process by which people generate speech or text

14. The Chomsky hierarchy, again

Chomsky identified four classes of (formal) languages

- Together with 4 classes of mechanism capable of generating them
- And four variants on rewriting rules (more on this later) ditto

type 3
- regular languages; finite-state automata; regular grammars

type 2
- context-free languages; pushdown automata; context-free grammars

type 1
- context-sensitive languages; linear bounded automata; context-sensitive grammars

type 0
- recursively-enumerable languages; Turing machines; generalised rewriting systems

Each mechanism and grammar type is capable of generating any language of its type, or a higher type

- But not a lower type

The current pretty broad consensus is that natural languages are somewhere between type 2 and type 1

- Closer to 2 than 1, insofar as that makes sense