
Lab for week 7: Probabilistic Parsing

Author: Henry Thompson
Author: Bharat Ram Ambati
Author: Sharon Goldwater
Date: 2016-10-30, 2018-10-24
Copyright: This work is licensed under a Creative Commons

Attribution-NonCommercial 4.0 International License1:
You may re-use, redistribute, or modify this work for non-
commercial purposes provided you retain attribution to any
previous author(s).

Use the html version2 of this lab if you want to easily access the links or copy and paste commands.

Or use the pdf version3 if you want nicer formatting or a printable sheet.

Goals and motivation of this lab

In this lab we explore probabilistic phrase structure grammars and chart parsers which use such grammars. We’re
using the same data as the previous lab, 3914 treebanked sentences from the Wall Street Journal.

As always, we have written most of the code for the lab already and included a lot of explanatory comments, but
we will ask you to add a few things here and there. For students with more programming background, the ’Going
Further’ section will give you a chance to explore some more advanced topics.

Preliminaries

As usual, create a directory for this lab inside your labs directory:

cd ~/anlp/labs
mkdir lab6
cd lab6

Download the files lab6.py4, lab5_fix.py5 BetterICP.py6 into your lab6 directory: From the Lab 6 web page7,
right-click on the link and select Save link as..., then navigate to your lab6 directory to save.

Launch our environment and start up spyder (or ipython, or just use python: by now you probably know how you
prefer to work):

conda activate anlp
spyder &

1http://creativecommons.org/licenses/by-nc/4.0/.
2lab6.html
3lab6.pdf
4http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab6.py
5http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab5_fix.py
6http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/BetterICP.py
7http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab6.html
8https://gist.github.com/nlothian/9240750

1

http://creativecommons.org/licenses/by-nc/4.0/.
http://creativecommons.org/licenses/by-nc/4.0/.
lab6.html
http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab6.py
http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab5_fix.py
http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/BetterICP.py
http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab6.html
http://creativecommons.org/licenses/by-nc/4.0/.
lab6.html
lab6.pdf
http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab6.py
http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab5_fix.py
http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/BetterICP.py
http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab6.html
https://gist.github.com/nlothian/9240750

Running the code

You can run this week’s lab as follows:

%run lab6.py

It should print the first parsed sentence and the productions in it.

Following lab 5, we use the Penn Phrase Structure Treebank for this lab as well. This data consists of around 3900
sentences, where each sentence is annotated with its phrase structure tree. We use NLTK libraries to load this data.

(Don’t forget to do:

%run lab6.py

after you’ve done some edits, in order to get your new function definitions.)

Probabilistic Phrase Structure Grammar (PCFG)

Probabilistic Phrase Structure Grammars (PCFGs) are Phrase Structure Grammars, where each production has a
probability assigned to it. Consider the toy PCFG grammar. In NLTK, the data type of this grammar is Proba-
bilisticGrammar:

Grammatical productions.
S -> NP VP [1.0]
NP -> Pro [0.1] | Det N [0.3] | N [0.5] | NP PP [0.1]
VP -> Vi [0.05] | Vt NP [0.9] | VP PP [0.05]
Det -> Art [1.0]
PP -> Prep NP [1.0]
Lexical productions.
Pro -> "i" [0.3] | "we" [0.1] | "you" [0.1] | "he" [0.3] | "she" [0.2]
Art -> "a" [0.4] | "an" [0.1] | "the" [0.5]
Prep -> "with" [0.7] | "in" [0.3]
N -> "salad" [0.4] | "fork" [0.3] | "mushrooms" [0.3]
Vi -> "sneezed" [0.6] | "ran" [0.4]
Vt -> "eat" [0.2] | "eats" [0.2] | "ate" [0.2] | "see" [0.2] | "saw" [0.2]

Each production has a probability assigned to it. Change the probability of the production NP -> NP PP from
0.1 to 0.01. Re-run the code. What is the error given by the code?

Change the value back before continuing!

Comment out the three lines that are printing out the first sentence and its productions.

PCFG Parser:

We made a simple class called BetterICP. It uses NLTK’s InsideChartParser module which is a proba-
bilistic chart parser (help(nltk.InsideChartParser) for more details).

BetterICP class has a method parse which parses a sentence and prints all possible parses. This method takes
three arguments. First argument is tokens, which is a list of words in the sentence. Second argument is notify.
notify=True will print each parse as it is found without waiting until the end of the process. Third argument
max defines the number of possible parses to be printed. The parsing process will stop once max number of parses
have been found.

Un-comment the lines in lab6.py which initialise the BetterICP class with our simple grammar and call the
method parse, then reload.

2

The figures to the right of the parse gives the probability, the total cost of the tree and the cost of the spanning S
edge.

Note that our toy grammar has an NP -> NP PP rule which created problem with our recursive descent parser.
Why didn’t it pose a problem now? There is another rule in our grammar which might have created a left recursion
problem. What is that rule?

Run the parser on sentences "he sneezed" and "he sneezed the fork". What is the output for each of these sentences
?

Ranking parses

Uncomment the next two parses, so the PCFG parser runs on the sentences "he ate salad with mushrooms", and
"he ate salad with a fork". Note that the parses are ranked based on their probabilities (high to low)/costs(low to
high).

Observe the PP-attachment (preposition phrase attachment) and identify which VP production is preferred. In the
best parse, is PP attached to NP (noun phrase) or VP (verb phrase) ?

Edit the grammar and switch the probabilities of the two rules involved. Re-load, with appropriate commenting so
that only sentence2 and 3 are parsed. What changes ?

Turn tracing on, by adding the following before the sppc.parse lines in lab6.py:

sppc.trace(1)

and rerun the three parses you’ve done so far.

Can you see how the order in which edges are added is determining what analysis gets found first?

Can you see now the parse is effectively breadth-first, as discussed in lecture? Try to spot where a shorter edge
that will eventually not be part of the best overtakes a longer one that will.

Try changing the rule probabilities back to where they started, and watch again.

Working with the real grammar

In the above sections, we worked with a toy grammar created by hand. For example, consider Prep -> "with"
[0.7] | "in" [0.3] production in our toy grammar. This means that out of all the possibilities there are
only two prepositions in the language, and that e.g. when generating they should be chosen with the associated
probabilities.

In this section, we shall work with the grammar from the treebank. psents contains all the parsed sentences
in the treebank. prods = get_costed_productions(psents) gives all the productions in the treebank
with their costs.

And with the treebank-based grammar, as we see from get_costed_productions, the cost is not some
made-up number, but the -base-2-log of the maximum-likelihood estimate of the probability of each production,
based on its frequency in the treebank.

Create a PCFG by uncommenting the prods=... and ppg=PCFG(Nonterminal(’NP’), prods) lines
in lab6.py and re-loading.

The first argument to PCFG is the start symbol and the second argument is the productions with their costs. The
first argument just determines the start symbol for parsing purposes, it doesn’t restrict the productions that are
included. That is, all the productions in prods will be in ppg.

Now try sprods = ppg.productions(Nonterminal(’S’)), which gives a list of all the productions
that start with ’S’. How many productions are there in the treebank that start with ’S’?

There is a useful complete listing of the tagset used in the Penn Treebank8 online.

3

https://gist.github.com/nlothian/9240750

Print the first 10 productions in this list to get a feel of the kind of productions used in the treebank, and why we’re
going to start with NP for our little experiment.

Note also that punctuation symbols do appear both in the trees and the grammar. Many common punctuation marks
occur as pre-terminals for themselves (and sometimes some close friends), that is, for example, , -> ’,’ and
. -> ’.’ | ’?’ | ’!’, but in order to avoid confusion with the tree displays, this does not apply to
brackets, which use three-letter acronyms, as follows:

-LRB- -RRB- -RSB- -RSB- -LCB- -RCB-
() [] { }

Finally, irritatingly, the -digits which regularly appear at then end of some tags are coreference markers which
pair up e.g. a relative pronoun and a subsequent gap, as in:

(NP
(NP (DT the) (NN executive) (NNS functions))
(SBAR

(WHNP-2 (WDT that))
(S

(NP-SBJ (DT the) (NNP Confederation) (NNP Congress))
(VP (VBD had)

(VP (VBN performed)
(NP (-NONE- *T*-2)))))))

the executive functions that the Confederation Congress had performed

Un-comment the following lines and run the code:

ppc=BetterICP(ppg,1000)
print "beam = 1000"
ppc.parse("the men".split(),True,3)

What happened? Why do you think that is?

Now comment out the last two of the above three lines, and remove the comments from the next three lines, to
widen the beam to 1075, and run again.

What’s surprising about the results, given our discussions in class about the relative frequency of ’the’ as DT and
’the’ as JJ??

Uncomment three more lines to try width 1200 (but do not uncomment the trace lines).

You should now be able to see three different parses for this simple noun phrase. These parses are ranked based
on increasing costs. The number printed with the parse tree is the cost. So, the lower the number, the higher the
probability of that parse. We’re still not seeing the simple DT NNS structure we might expect.

Finally uncomment on the last three lines to widen the beam rather a lot more, and run again.

What has finally happened?

How could increasing the beam width have improved the results the way it did?

Finally turn tracing on by uncommenting the:

ppc.trace(1)

line, and arranging the other comments so only the beam-width 1900 parse will be attempted. Do not run this from
inside ipython (or use Control-C to interrupt it if you do :-).

From the terminal command line, do:

> python lab6.py > ptrace.txt

4

Use:

> less ptrace.txt

to look at the results, in the form of a line for each edge. The ASCII art in the left-hand column is a bit hard to
make sense of at first, but the remaining columns are easy:

∙ the interval covered (e.g. "[1:2]" for an edge between vertex 1 and vertex 2)

∙ the word or dotted rule on the edge -- if the * (dot) is at the end, the edge is inactive, otherwise
active

∙ the cost

You can also use ’grep’ to find what’s happening to the two rules we care about, as follows:

> egrep -n ’the|men|NP -> ([*]\s)?(DT|JJ)\s([*]\s)?(NNS|NP)(\s[*])?\s*\[’ ptrace.txt

Note that tracing at this level shows edges as the come off the agenda and into the chart, so we can’t see exactly
why the result we’re looking for never appeared.

To see more detail edit the file again to switch to beam-width 1200, and up the level of detail in the trace to show
pruning:

ppc.trace(3)

Again, run from outside ipython:

> python lab6.py > ptrace2.txt

Use the less and the egrep command on ptrace2.txt this time to see what went wrong. Can you see why
we’re ’losing’ the correct answer? Where are the edges coming from that are filling up the beam?

You may want to try exploring ptrace2.txt with less -N and its /regexp command which skips forward
to the next occurrence of that regexp. Also note that you don’t have to quit and type less -N to back up and look
for something else, you can just use b to b ack up a page, and g to g o back to the beginning.

If you’re more comfortable searching inside an editor, you can just load ptrace2.txt into an editor and do that.

Aside from the speed of our old DICE machines, what’s wrong with the grammar that’s causing so much wasted
effort? (Hint: A simpler answer than the ones we’ve looked at in class is all that’s needed.)

Going Further:

1. Further to the last question, try sorting prods in increasing order of cost -- what stands out about many of the
lowest cost productions? (Hint: what’s the easiest way for some production to have cost 0?)

You can check your guess by referring to the counts you get from:

pd=production_distribution(psents)

using the supplied production_distribution function, similar to the one we used last time, but which just
counts productions without separating lexical from non-lexical.

2. Draw the ’correct’ phrase structure tree for the sentence "he ate salad with a fork" manually according to the toy
grammar. Compare your tree with the output trees when parsed with sppc.

To draw your correctly bracketed structure, represented as a string, use NLTK commands as shown below, using
your own string:

5

treeStr = "(S (NP (Pro he)) (VP (Vt ate) (NP (N salad))))"
tree = nltk.tree.Tree(treeStr)
tree.draw()

3. Update the grammar to handle imperative sentences such as "eat the salad".

4. Take some sample sentences, draw their correct phrase structures, get the first best output from the PCFG parser
(set the beam width as low as you can!) for these sentences and evaluate them using parseval.

5. Create a text file called "input.txt" and write three sentences "he ate salad", "he ate salad with mushrooms", and
"he ate salad with a fork" into this file, where each sentence is in a separate line. Write a function which reads
sentences from this file, parses them and print the output into "output.txt" file.

Extra credit: Recompute the productions while ignoring all the -digit* suffixes on Nonterminal symbols which
occur throughout the treebank. How many productions now?. Rebuild the grammar. Re-run some tests -- any
changes?

Even more extra credit: Edit the code to a) actually store costs, not probabilities and b) use a figure of merit as
discussed in class rather than the simple sum of costs. This should fix the problem observed at the end of the lab
above.

6

	Goals and motivation of this lab
	Preliminaries
	Running the code
	Probabilistic Phrase Structure Grammar (PCFG)
	PCFG Parser:
	Ranking parses
	Working with the real grammar
	Going Further:

