
Lab 1: basic UNIX tools

Author: Sharon Goldwater, Ida Szubert, Henry S. Thompson
Date: 2014-09-01, updated 2015-09-15, 2016-09-15, 2017-09-15,

2018-08-20, 2018-09-18, 2019-09-05
Copyright: This work is licensed under a Creative Commons

Attribution-NonCommercial 4.0 International License1:
You may re-use, redistribute, or modify this work for non-
commercial purposes provided you retain attribution to any
previous author(s).

This lab is available as a web page2 or pdf document3.

Preamble: how to do the labs for this course

This course has a biweekly 1.5-hour lab session where you will work through the instructions and questions either
from the web page or the PDF version3, which you can print ahead if you want.

You should work with a partner, sharing a single keyboard and screen. This will help you meet other students
and learn more, since your partner may have questions or comments you hadn’t thought of, and you’ll learn to
communicate about course concepts, which is important for your understanding (and for the exam!)

For this to work well, each person should ensure that both they and their partner understand what is going on. Pay
attention to what your partner is doing and discuss what’s going on. That means:

∙ If you know the answer and your partner doesn’t, don’t just type it in and move on to the next question---
explain what you have done and why. This helps your partner learn and improves your own understanding.
Ask if your partner is satisfied with your explanation. Can you think of other examples to help your partner
understand? Explaining technical concepts to other people is an important skill, and this will help you
practice it.

∙ If your partner knows the answer and you don’t, don’t let them move on until you understand too. Don’t
let them dictate what you should type if you don’t understand why. Do ask questions, and tell your partner
if their explanation makes sense or not. Remember, just because they think they know the answer doesn’t
necessarily mean they are right! If it doesn’t make sense to you, they need to work harder at explaining, and
maybe discover that they are wrong!

∙ If neither of you knows the answer, ask one of the demonstrators in the lab, and we can try to help you.

∙ If one person is much more familiar with Python than the other, try putting the less experienced person at
the keyboard or at least switching frequently, so they will get more practice with basic coding skills.

1http://creativecommons.org/licenses/by-nc/4.0/.
2http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab1.html
3http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab1.pdf
4http://computing.help.inf.ed.ac.uk/new-taught-students
5http://computing.help.inf.ed.ac.uk/sites/default/files/IntroLecture201617.pdf
6https://web.stanford.edu/class/cs124/kwc-unix-for-poets.pdf
7http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab2.html

1

http://creativecommons.org/licenses/by-nc/4.0/.
http://creativecommons.org/licenses/by-nc/4.0/.
http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab1.html
http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab1.pdf
http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab1.pdf
http://creativecommons.org/licenses/by-nc/4.0/.
http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab1.html
http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab1.pdf
http://computing.help.inf.ed.ac.uk/new-taught-students
http://computing.help.inf.ed.ac.uk/sites/default/files/IntroLecture201617.pdf
https://web.stanford.edu/class/cs124/kwc-unix-for-poets.pdf
http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab2.html

You should be able to work through the main set of questions in 1.5 hours. However, we encourage you to go
beyond the basic set of questions to further improve your practical skills and understanding, using the "Going
Further" section at the end of each lab.

NOTE: This week’s lab has a lot to read. Future labs will have less reading and more thinking/coding, but you
need to read through some basics first.

Preliminaries: to do before the first lab session

Please do the following before arriving at the first lab session.

1. Get a DICE (Distributed Informatics Computing Environment) account. All students on an Informatics
degree should already have an account. If you are on a degree in another school, you will automatically get a
DICE account once you have registered for this class, so please register as soon as possible. In the meantime,
please pair up with another student who already has an account and do the lab together using their account.

2. Read the School’s Computing Support information page for new taught students4 and introduction to DICE5.
The rest of the lab assumes you have read sections 1-4 and 8 (at least up to "other things to consider") of the
introduction to DICE.

Goals and motivation of this lab

This lab aims to:

∙ familiarize you with basic command line tools in the UNIX operating system.

∙ give you a first taste of working with text data.

What is UNIX?

This operating system is commonly used by computing researchers and programmers; in Informatics we use a
version called Scientific Linux, which is installed on all of the student lab machines and which you will be using
for the practical labs in this course. (The UNIX tools described here are also available in Apple’s OS X, and in
Windows by installing additional software such as Cygwin.)

UNIX commands can be a bit confusing at first but are powerful tools for manipulating files and data, including
exploratory data analysis. This lab will introduce some basic UNIX commands for exploring and processing files.
You can do a lot of useful stuff with just a few commands, and we hope you’ll keep using the skills from this lab
for the rest of the semester and in your other courses.

But I already know UNIX!

This course is taken by students with many different backgrounds. If you are already familiar with UNIX, please
skim through anyway to make sure you know all the commands we discuss and can do the tasks at the end of the
lab. You may also want to take a look at the Going Further section for more practice, and you can also help out
your classmates who have less experience than you.

What data will we use and what will we do with it?

We will explore the data from a corpus of parent-child interactions, building up to computing the child’s mean
length of utterance (MLU) in one or two files. MLU measures a child’s language development: it is just the
average number of words (or, sometimes, morphemes) in each of the child’s utterances (spoken sentences).

Lab Setup

To set up for the labs, log into your DICE account and open a shell (also called a terminal) following the instructions
in the Introduction to DICE document. You should see a command prompt of the form:

2

http://computing.help.inf.ed.ac.uk/new-taught-students
http://computing.help.inf.ed.ac.uk/sites/default/files/IntroLecture201617.pdf

[hostname]username:

Now, create a directory (folder) called anlp that you will use for all your ANLP work. You can do this by entering
the following command at the prompt. (Remember, mkdir stands for ’make directory’)

mkdir anlp

Now, create a subdirectory for your labs, and then another one for this lab. (You cannot create a subdirectory
before creating the directory it belongs inside.)

mkdir anlp/labs
mkdir anlp/labs/lab1

Downloading the data

In this lab we will be working with data from CHILDES, the Child Language Data Exchange System. CHILDES
is a collection of many different corpora in many different languages, all contributed by researchers of child
language development. Different researchers have different interests, so the corpora contain different types of data
(transcriptions, audio, and/or video) and different kinds of annotations (ranging from detailed phonetic transcripts
to morphological and syntactic annotations).

We will use the Providence corpus for this lab. To download the corpus, click on the following URL or paste it into
your web browser: http://homepages.inf.ed.ac.uk/sgwater/teaching/Providence.zip. You should get a dialog box
asking what to do with the file; choose Open with Archive Manager (default). In the next window,
click Extract and then navigate to your lab1 directory by double-clicking in the right-hand pane on the anlp
folder, then labs, then lab1. Then click Extract.

ls

Go back to your terminal window and cd (meaning change directory) into the lab1 directory:

cd anlp/labs/lab1

If you ever get confused or forget which directory you are in, use the pwd (print working directory) command. Try
it now:

pwd

Now let’s list the contents of the current directory using ls:

ls

You should now see a subdirectory called Providence, which contains the data you just downloaded. What do
you see in it? What about in the further subdirectories?

ls Providence
ls Providence/Ethan

Looking at the data

less

To get an idea of what is in the files you just downloaded, type:

3

http://childes.psy.cmu.edu/
http://homepages.inf.ed.ac.uk/sgwater/teaching/Providence.zip

cd Providence/Ethan
less eth01.cha

What information is in the metadata at the top of each file? (Hint: child language researchers use the format y;m.d
to indicate a child’s age in years;months.days)

(less may seem like a funny name for this command which shows you more of the file; it’s because there was an
earlier similar command called more, so when this newer version was developed the developers decided to give it
a cute name. UNIX developers like cute names.)

When you are looking at a file using less, you can scroll up and down using the arrow keys or <PageUp>/<PageDown>.
<space> also acts like <PageDown> and <Enter> acts like <down-arrow>.

What do you see in the rest of the file? (Hint: the string of numbers at the end of each line is a code that links
to a time point in the audio recording of this data. The audio isn’t included here but can be obtained from the
CHILDES database.)

One final useful thing you can do with less is search for a particular string in the file by typing / followed by the
string. Try it: type

/the

You should see all of the instances of the being highlighted.

To stop viewing the file and go back to the terminal command line, type q.

Actually, the eth01.cha file maybe is not so interesting. Look now at eth50.cha. What are some of the main
differences between the data in these two files? Can you think of an explanation for those differences? (If you
want to look at both files simultaneously, you could start a new terminal and open one file in each terminal.)

head, tail

Sometimes we just need a quick peek at part of a file. What does this command do?

head eth01.cha

What about this one?

tail eth01.cha

These commands can be useful, for example, if we want to look over the range of ages in the files we have. Try:

head *.cha

What does the * do?

man

We don’t really need to look at the first 10 lines of each file to see the ages, we only need the first five lines. If we
could print only the first five lines, we could see the information we want more compactly. Most UNIX commands,
including head, have many possible options to change their behavior. To see what options are available, look at
the manual for the command:

man head

You should see:

4

HEAD(1) User Commands HEAD(1)

NAME
head - output the first part of files

SYNOPSIS
head [OPTION]... [FILE]...

DESCRIPTION
Print the first 10 lines of each FILE to standard output. With more
than one FILE, precede each with a header giving the file name. With
no FILE, or when FILE is -, read standard input.

Mandatory arguments to long options are mandatory for short options
too.

-c, --bytes=[-]K
print the first K bytes of each file; with the leading ‘-

’,
print all but the last K bytes of each file

-n, --lines=[-]K
print the first K lines instead of the first 10; with the lead-

ing ‘-’, print all but the last K lines of each file

-q, --quiet, --silent
never print headers giving file names

-v, --verbose
always print headers giving file names

...

Note: you should be able to move up and down in the man pages using the same keys you used for less [I
hope; the default for the student account might not allow you to move upwards...], and you can also return to the
command line using q.

The man page starts with the name of the command and a brief synopsis of how to use it. In this case, it says that
the head command can be followed by zero or more options (sometimes called flags) and then zero or more files
as arguments (things to act on). The square brackets indicate that these options and files need not be included at
all, and the ... indicate that you can include more than one of each.

The description after the synopsis says what will happen if you include zero or multiple files. (Standard input
refers to the text you input in the terminal. Try entering head with no filename to see how this works. You will
need to enter some more text after that! To quit, type Ctrl-c.)

The next part of the description tells you what the possible options are and if they require arguments themselves.
Many (in this case all) options have both a short and a long form, which are equivalent. For example, to print just
the first 5 lines of each file, we could either use:

head -n5 eth01.cha

or:

head --lines=5 eth01.cha

(To try this yourself, you will need to either use another terminal or quit the man page first by typing q.)

5

The K specified in the description is a variable indicating a required argument to the -n option. Here we use the
value 5 for K. Notice that this option also has a non-required argument [-] so if we wanted to print all but the last
5 lines we could type:

head -n-5 eth01.cha

As noted above, you can specify multiple options at once. Compare the output of the following commands:

head -n5 *.cha
head -n5 -q *.cha

Now that you know how to read a man page, you may want to look at the man pages for some of the other
commands we’ve seen to see what options are available for them.

There is also a lot of help about these commands on the Internet. You can find more examples or maybe a better
explanation than the man page has. If you know the name of the command you want to use, like grep, try search-
ing for UNIX command grep. If you know what you want to do but not the name of the command, searching
is trickier, but try searches like UNIX search regular expression or even UNIX find string in
file. Get in the habit of looking for help--you will start to recognize some of the main help forums and which
ones are most useful to you.

Being lazy

As you may have noticed, most UNIX commands are very short to avoid lots of typing. You can avoid even more
typing by using tab completion and history.

Tab completion

Type the following into your terminal. Instead of pressing <enter> at the end, press the <tab> key:

head e

You should find that the filename has been automatically extended to eth. If you type 01 and then <tab> again,
you will have the complete filename. In this case the tabbing didn’t save many keystrokes, but for long filenames
it can save a lot. You can use tab completion for nearly anything in UNIX (commands, filenames, directories).
The operating system will complete as much as it can but will stop where there are multiple possible extensions
(like here, where all files in the current directory start with eth but we then had to type in 01 to disambiguate
before tabbing again.) In DICE, tab completion is set up so that if you hit <tab> twice when there are multiple
completions, the system will print out all possible completions for you to see.

History

Your terminal keeps track of all the commands you have entered. To access the previous command, just type the
up-arrow key. If you hit <up> twice, you will get the command before that, and so forth. This can save a lot of
typing.

Finding and counting things in files

wc

Try this command:

wc eth01.cha

6

What are the numbers that you got back? What do you think wc stands for? (Hint: look at the man page!)

Using a single command, can you figure out which of the first nine Ethan files has the most lines in it?

grep

Sometimes we want some more specific information. The number of lines in a file roughly indicates how much
language data is in there, but what if we want to know how many utterances are spoken by a particular person? Try
this command:

grep ’MOT’ eth01.cha

What did this command do?

Using the man page for grep, figure out what option you can use with grep to compute the number of utterances
spoken by the mother in this file.

In case you are wondering, grep stands for Globally search for a Regular Expression and Print. We won’t discuss
regular expressions (REs) in detail here, but they are covered in Section 2.1 of the Jurafsky and Martin textbook,
and also in the Computer Programming for Speech and Language Processing course. (The grep man page also
explains the syntax that grep uses for REs.) REs are a powerful way to match patterns in text and we hope you
will learn to love them. For now, we will just show you a few simple REs to show some of what you can do.

First, look at this command but don’t run it yet:

grep ’MOT.*the’ eth01.cha

What do you think it will do? (Hint: . matches any character, and * means "zero or more repetitions of the
previous character")

To see if you were right, run the command and look at the first few lines of output. Even better, let’s only print out
the first few lines of output. We can do that by combining two commands we already know, grep and head:

grep ’MOT.*the’ eth01.cha | head

pipes and redirection

What just happened?

The | (vertical bar on the keyboard, called pipe in UNIX-world) tells the operating system to use the output of the
first command as the input to the second command. (Another way to think of this is that it turns the output of the
first command into "standard input", which as you will recall, is what is used as input to head if no filename is
given.

Can you think of a way to use pipe to combine two commands we already know to count the number of lines that
include the string MOT without using the -c option for grep?

Instead of sending the output of one command to the input of another, we can also just send the output of a
command into a file. This can be useful if we want to save the output for later inspection, and we do it using the >
(output redirect) character:

grep ’MOT.*the’ eth01.cha > my_output.txt
less my_output.txt

grep again

Coming back to regular expressions, let’s make sure you understand what the RE ’MOT.*the’ is matching in
the grep command. What is the difference between the following two commands?

7

grep ’MOT.*the’ eth01.cha
grep ’MOT.*\bthe\b’ eth01.cha

You may want to look at just the start of the output by piping it to head. Or try using the --color=auto option
for grep (unfortunately the color is lost if you pipe the output).

In general, backslashes are used in regular expressions to indicate something special (like a word boundary or any
whitespace character) and are also used to make characters that are usually special (like *) be interpreted literally.
So, for example, if we want to match only the lines spoken by the mother, we should use ’^*MOT’ rather than
just ’MOT’, because the first version only matches the exact string *MOT at the beginning of a line (indicated by
the ^). The second version also matches lines that are not spoken by the mother but happen to contain the string
MOT. (Are there any?)

As you can start to see, regular expressions can be very powerful but proper use takes time and practice, and we
will not go any further here.

Computing MLU

Believe it or not, we now have all the commands we need to be able to compute the child’s mean length of utterance
in any given file. Remember, MLU is the average number of words spoken by the child in each of the utterances in
the file. What is Ethan’s MLU in the file eth50.cha? Assume for this question that a word is any whitespace-
delimited string of characters (including punctuation) in the transcription. So, for example, you should count fill
him with pom+poms xxx . as six words.

Hint: you can’t get the answer entirely automatically. Use the commands you know to get a few key numbers and
then perform some basic arithmetic on them yourself. This works fine if we only care about the MLU for one or
two files. If we wanted to compute MLU for all the files, we would probably want to write a short program to do it.

Going Further

If you want, try your hand at one of the following, in whatever order you like:

1. We showed how to get all the lines from a file that contain the word ’the’. But what if we actually want
to count the number of occurrences of ’the’? Can you figure out how to do this using grep, possibly in
combination with other commands we’ve seen? (Hint: look at other command line options to grep. If you
aren’t sure whether the output is what you want, make sure you test it! Creat a small file of your own where
you know the right answer.)

2. Suppose you are only allowed to use the same options to grep that we used earlier in the lab. By reading the
man page or searching the Web, figure out how the tr command works, and use it together with commands
we’ve seen to count the number of occurrences of ’the’ in a file.

3. We’ve covered a few useful commands here, but there are quite a few more that can come in handy for text
processing and other NLP-related tasks. To learn more about those, you may want to go through the Unix
for Poets6 tutorial.

4. Explore the data a bit more using Python, by going through Lab 2 from 20147 . (We won’t use that lab this
year because we have a tutorial instead, but that doesn’t mean it isn’t useful!)

8

https://web.stanford.edu/class/cs124/kwc-unix-for-poets.pdf
https://web.stanford.edu/class/cs124/kwc-unix-for-poets.pdf
http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab2.html

	Preamble: how to do the labs for this course
	Preliminaries: to do before the first lab session
	Goals and motivation of this lab
	Lab Setup
	Downloading the data
	ls

	Looking at the data
	less
	head, tail
	man

	Being lazy
	Tab completion
	History

	Finding and counting things in files
	wc
	grep
	pipes and redirection
	grep again

	Computing MLU
	Going Further

