
Lab 2: Exploring corpus data with Python and matplotlib

Author: Sharon Goldwater
Date: 2014-09-01, updated 2015-10-01
Copyright: This work is licensed under a Creative Commons Attribution-NonCommercial 4.0

International License1: You may re-use, redistribute, or modify this work for non-
commercial purposes provided you retain attribution to any previous author(s).

This lab is available as a web page2 or pdf document3.

Goals and motivation of this lab

In Lab 1 we saw that you can do some basic exploration of language data using only UNIX commands, but in
general you will want to go further. Using Python we can write more complex functions that process multiple files,
and we will also see how to visualize the data using Matplotlib library functions. We have also included several
questions to get you thinking about the linguistic data and what it means, which is important even if you already
know how to do the programming parts!

The example functions and plots used in this lab will start to give you a basis for lots of other functions and plots
you may need to write later, either for homework assignments in this class, for other classes, or for your projects
over the summer. (These really are only a start; we’ll continue developing more plotting skills next week.)

Because some students are still Python beginners, we have written most of the code here already and have added a
lot of comments explaining how it works. You’ll have a chance to modify some of the code to help you understand
it better.

For students who are more experienced programmers: please note that we have tried to keep the coding style here
very simple, and have avoided some of the more advanced language features of Python. However, see the ’Going
Further’ section at the end if you want to try your hand at using some of those features.

Preliminaries

This lab will be using the same data set as Lab 1. If you didn’t download the data already, please do so following
the instructions in Creating your lab directory and Downloading the data from Lab 14. Below we will assume the
data is located in your lab1 directory.

Now, create a directory for this lab inside the labs directory you made last week (or in the previous step), and cd
into that directory:

cd ~/anlp/labs
mkdir lab2
cd lab2

Download the file lab2.py5 into your lab2 directory: From the Lab 2 web page2, right-click on the link and select
Save link as..., then navigate to your lab2 directory to save.

1http://creativecommons.org/licenses/by-nc/4.0/.
2http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab2.html
3http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab2.pdf
4http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab1.html
5http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab2.py

1

http://creativecommons.org/licenses/by-nc/4.0/.
http://creativecommons.org/licenses/by-nc/4.0/.
http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab2.html
http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab2.pdf
http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab1.html
http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab2.py
http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab2.html
http://creativecommons.org/licenses/by-nc/4.0/.
http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab2.html
http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab2.pdf
http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab1.html
http://www.inf.ed.ac.uk/teaching/courses/anlp/labs/lab2.py


Next, open the file using your favorite text editor. If you don’t have one, we suggest gedit.

gedit lab2.py &

If using gedit, you will want to set auto-indenting so that hitting <enter> will automatically insert enough spaces
to line up your cursor with the line above (useful for Python coding). If you need to indent further, e.g. starting a
loop, you will need to type 4 spaces.

Set auto-indent using the menu Edit->Preferences, go to the Editor tab and tick "Enable automatic indentation".

Examining and running the code

Before doing anything with the code, let’s take a quick look at it first. You will see that there are some import
statements at the top; if you are new to Python you should read the comments in the code that explain what they
do, though you need not do so right now. (Comments are enclosed in triple quotes ’’’ or begin with a hash mark
#.)

In the main part of the file there are several function definitions, which we will explore in more detail in the rest
of the lab, and a block of code that gets command line arguments and calls the functions, as we’ll explain in a
moment.

Running code in iPython

As you may already know, there are different ways to run Python code. The first way you probably learned was
to type directly into an interpreter such as Idle. In this class, we will use the iPython interpreter. To start the
interpreter, just type the following into a terminal:

ipython

You should get a In [1]: prompt, and can now do things like this (where the Out line is the interpreter’s
response):

In [1]: 3+4
Out[1]: 7

Later, when you want to exit iPython, type exit().

If you have a whole file of code, as we do here, you could just cut and paste some/all of the file into the interpreter,
but that’s unwieldy. iPython provides us with a convenient way to do the same thing without pasting. Try typing
this into the interpreter:

%run lab2.py

(Note: commands that start with ’%’ are specific to iPython, and may not work in other Python interpreters).

What happened? Can you see which line of code in lab2.py generated the message you got?

You can also run the code from the terminal. Verify this by typing the following in a terminal window:

python lab2.py

You should see the same message you got before. But, the advantage of using %run inside iPython is that after
running the code, we still have access to all the variables and functions defined in it, which we do not have if we
run the code in the terminal. To see how this works, go back to the interpreter and try this:

%run lab2.py ../lab1/Providence/Ethan/eth01.cha ../lab1/Providence/Ethan/eth02.cha

2



Note: you can use tab completion in iPython just like in a UNIX terminal. In fact you can also use lots of other
UNIX commands like ls, pwd, etc. Again, this functionality is specific to iPython and may not work in other
interpreters.

You should see a plot pop up on the screen. We will come back to the plot in a moment, so for now just close that
window (otherwise you will not be able to type anything further into the interpreter).

Since you now have access to the variables defined in lab2.py, try typing fnames in the interpreter. What is the
value of this variable?

In case you are wondering, fnames was set using the special variable sys.argv, which gets set automatically
to be the list of arguments provided at the terminal or %run command (with sys.argv[0] being the program
name, here lab2.py, and the rest of the items in the list being any remaining arguments, in this case the file-
names).

Now, without looking at the value of the word_counts variable, can you figure out what data type it is? (Hint:
look at the comments and/or code in the “get_word_counts“ function).

Once you have figured that out, you should be able to get the count of the word ’the’. What is it?

Getting help in iPython (and in general)

Before moving on, let’s make sure you know how to get help. There are several ways to do this:

1. Simply type help() at the iPython interpreter prompt; you can then type a module name (e.g.,
string) and you will get some documentation. Actually a lot of documentation, but maybe not the
most helpful kind. So, it may be better to try options 2 or 3. (Hit q to exit help.)

2. To get a list of all the methods available for a particular variable, you can use tab completion in
iPython. This can also work to tell you all the methods available for particular datatype, like a string.
For example, type the following two lines into the interpreter, but don’t hit <enter> after the second
line:

str = "a string"
str.

Now type <tab>. You should see a list of all of the methods you can call on str, which is to say, all
the methods for strings.

3. Often it’s most appropriate to just search the Internet, if you want more general information, don’t
know the name of the function you’re looking for, want examples of how to use particular functions,
or whatever.

4. A final point: help also works for functions defined in your own code, if you have written documen-
tation for them. Try typing help(zipf_plot). Notice where the documentation comes from in
the code we wrote in lab2.py.

Looking at the data

The code we have given you is actually not quite correct. Let’s try to figure out what is wrong and how to fix it.
First, create a plot like the one we saw before but this time using only one file:

%run lab2.py ../lab1/Providence/Ethan/eth01.cha

First, compare the left-hand (linear) and right-hand (log) plots. Notice that on the linear plot it is nearly impossible
to see what’s going on except for the very top-ranked words. Those words are so much more frequent than anything
else that on the linear axes, almost all the words are compressed into a tiny portion of the plot. You will also see
that there are huge differences in frequency between the top few words; as you look further down the list, closely
ranked words have more similar frequencies.

3



Do you see anything funny in the Zipf plot? If you’re not sure yet, try checking some of the following. These are
all good things to sanity check whenever you are looking at language data:

∙ How many unique word types are there? (Use the len function).

∙ What are the first few and last few words as sorted alphabetically? (Use the sorted function and list
indexing to look at only part of the list)

∙ What are the first few and last few words as sorted by frequency? (To sort the keys in a dictionary, say
mydict, according to the values of the keys, you can do this:

sorted(mydict, key=mydict.get)

Create your own tiny dictionary called mydict to verify this.)

∙ If you have some previous programming/Python experience (don’t try this otherwise), an even better thing
to do is to modify the zipf_plot function so that the words themselves show up as the x-axis labels. You’ll
need to use the xticks function from matplotlib (Google it), and you can zoom in on just the top-ranked
words by using the optional maxRank argument to zipf_plot. (Of course, this won’t help you debug anything
that’s wrong with lower ranked words).

Hopefully by this time you will have noticed some problems with the data in word_counts. If you re-create the
Zipf plot, can you see where these problems are showing up?

Fixing the problem

Now that you have identified what’s wrong with word_counts, you should be able to make some very small
changes to the get_word_counts function that fix the problems, at least mostly. There may still be a few
things in word_counts that you don’t consider real words. What are some of those things? [The question of
what counts as a word and what doesn’t comes up a lot in NLP, and there is rarely a single correct answer; often
we need to use our judgment and justify our decisions.]

After making your changes to get_word_counts, re-run the code. Does the plot look any better now? Go back
and do the sanity checks in the previous section again to make sure you didn’t miss anything else. You can also try
running the code with a larger number of files, e.g.:

%run lab2.py ../lab1/Providence/Ethan/eth*.cha

The plot should look similar but smoother than it does with only one or two files. Why is it smoother?

MLU

Before going further, take a look at the get_mlus function and make sure you understand what it is doing. What
do the variables ntoks and nutts represent? Can you explain the line where ntoks gets incremented and why
there is a -3 there?

Now, remove or comment out the line of code that creates the zipf plot, and replace it with code that creates a graph
of MLUs. You will need to use the get_mlus function, and also fill in the plot_mlus function, which currently
does nothing. Use short_fnames as the labels for the MLU plot, so it should end up looking something like
the one below if you run on the Ethan data. (Hint: look at the plotting functions in zipf_plot for examples, and also
Google the Matplotlib documentation for plot and xticks. You are only making 1 plot, so you don’t need the
subplot command).

4



Once your plot looks right, save it as a PDF file, so you can create and compare plots across a few different
children. What general trends do you see in the plots and why? Why are the plots so jagged? Suppose we wanted
to use this data to directly compare the language development of the different children, i.e., whether one child is
acquiring language faster than another. What information is missing from the plots you just made that would be
needed in order to do this analysis?

Going Further

Have a go at some or all of the following. You may need to do some legwork to look up how to use the functions
or techniques that are mentioned. Tasks 1-3 are less challenging from a programming perspective but are still good
for getting you to think about the data some more. Task 4 may require a bit more programming but should also be
accessible to beginners.

1. Compute type/token ratios for the mothers and children in the corpus. (The type/token ratio is simply
the number of unique word types divided by the number of word tokens, where in this case we would
like you to compute the ratio for each mother and each child separately.) Do you see any consistent
patterns? How would you illustrate or describe these patterns effectively to someone else?

2. Generalize get_mlus to take a second argument that is a string. The new version should compute
MLU for lines beginning with that string (e.g., you should be able to compute the MLU for MOT
instead of CHI). Use Matplotlib’s subplot function to plot the MLU of MOT and CHI from the
same set of files in a single plot. Do you see the same trends in the MOT and CHI data? Discuss why
or why not.

3. Further improve the tokenization in get_word_counts so that the word counts you are collecting
more accurately reflect "real" words.

4. The information needed to make a fair comparison between children’s language development is al-
ready in the files we gave you. Write some new code that generates MLU plots using this information,
and see what you can conclude about the development of each child.

5



5. Rewrite get_mlus without using for loops by instead using list comprehension. (This exercise is
mainly intended for students who are experienced programmers but new to Python.)

6. Download the Manchester corpus from CHILDES, which contains morphological annotations, and
see if you can compute MLU based on the number of morphemes per utterance instead of the number
of words per utterance. (Warning: you will likely run into various unanticipated issues in processing
the data, this is par for the course in NLP)

6


	Goals and motivation of this lab
	Preliminaries
	Examining and running the code
	Running code in iPython
	Getting help in iPython (and in general)

	Looking at the data
	Fixing the problem
	MLU
	Going Further

