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Abstract. Previous research has shown that self-explanation can be supported
effectively in an intelligent tutoring system by simple means, namely, menu
selection (Aleven & Koedinger, 2002). We are exploring whether self-explanation
can be supported even more effectively by means of a tutorial dialogue system.
When students explain in their own words, they may pay more attention to the
crucial features of the problem and thus acquire more transferable knowledge. To
test this hypothesis, we are developing the Geometry Explanation Tutor, a tutor
which supports students as they solve problems and engages them in a restricted
form of dialogue to help them state general explanations of their problem-solving
steps. We conduced a formative evaluation study in a local junior high school,
comparing two tutor versions, one in which students explain in their own words,
one in which they explain by means of a simple menu. We found that there was
little difference between the learning results of the two conditions. We also found
that the pre-test scores in both conditions were unexpectedly high. Thus, the
hypothesized advantages for explaining in one’s own words do not seem to
materialize for students who start out with considerable knowledge of the subject
matter, yet may still materialize for students more typical of the target population.

Introduction

A number of cognitive science studies have shown that self-explanation is an effective
metacognitive strategy that helps students learn with greater understanding(Aleven &
Koedinger, 2002; Bielaczyc, Pirolli, & Brown, 1995; Chi, 2000; Renkl, 1999). Self-
explanation can be supported effectively in intelligent tutoring systems, using fairly simple
means such as templates or menus (Aleven & Koedinger, 2002; Conati & VanLehn, 2000;
Trafton & Trickett, 2001). For example, Aleven and Koedinger showed that students
working with a Cognitive Tutor learn more effectively when they explain their problem-
solving steps simply by selecting from a menu the name of the problem-solving principle
that justifies each step, as compared to solving problems without explaining.

However, self-explanation may be supported even more effectively by means of a
tutorial dialogue system that allows students to state explanations in their own words and
helps them in a dialogue to improve explanations that are deemed inadequate. When
students explain in their own words, they are likely to pay more attention to the crucial
features that must be present in a problem in order for a certain operator or rationale to



apply. They may thus be less likely to acquire “shallow knowledge” by means of implicit
learning processes and may be more likely to acquire knowledge at the right level of
generality. Further, when students explain problem-solving principles in their own words,
they may reveal more of the current state of their knowledge to the tutor. The tutor may
thus be in a better position to help them remedy misconceptions and construct new
knowledge to fill in gaps. Finally, an often-cited advantage of tutorial dialogue systems may
be that they cause a “generation effect” by forcing students to recall information from
memory rather than recognize items in menus (see e.g., Anderson, 1999, p. 194ff).

Such potential advantages must of course be weighed against potential
disadvantages. The downside of having students explain in their own words may be that it
takes students more time to produce adequate explanations, even if the system feedback is
very helpful. Inevitably, some amount of effort and attention will be spent to work out
“details” at the linguistic level, rather than thinking about the domain of interest. Just typing
the explanation also takes time.

The question, then, is whether students get more out of solving fewer problems that
they explain in their own words, or whether they learn more deeply when they solve more
problems, but explain them more superficially, by means of menus or templates. In light of
other recent results that show that “less can be more” in learning with instructional
technology (e.g., Aleven & Koedinger, 2002), we pursue the hypothesis that the first
alternative is better, that is, that students learn more deeply when they explain in their own
words, supported by system dialogue. In order to test this hypothesis, we are developing a
tutorial dialogue system called the Geometry Explanation Tutor (Aleven, Popescu, &
Koedinger, 2001; 2002). This system provides support as students solve geometry
problems (e.g., find unknown angle measures in a diagram) and helps them through a
restricted form of dialogue to state general explanations for their problem-solving steps.

In a previous classroom experiment, we compared explanation by means of dialogue
(as supported by the Geometry Explanation Tutor) versus explanation using a menu.
Although the students who explained by means of dialogue had better learning results than
those who explained by means of a menu (Aleven, Koedinger, & Popescu, in press), it is
hard to come up with a coherent interpretation of the detailed pattern of results. Thus, we
consider these results to be inconclusive. The fact that this study did not definitively show
an advantage of dialogue over menus does not necessarily invalidate the main hypothesis
presented above. It may well be that the dialogue system was not yet functioning well
enough or that the types of dialogues that it supports were not well-suited for the given
student population.

Therefore, we conducted a second study with the same design, comparing a system
version in which students explain in their own words during dialogues with the system with
a version one in which they explain by selecting from a menu. There were a number of
differences between the studies: First, the system’s natural language understanding and
dialogue management compoments had been improved considerably the second time around.
Second, the student population was different. The first study was conducted in an inner-
city school, the second in a suburban school. In the first study, one out of three class
periods involved consisted of honors students, in the second study, all students were
honors students. Finally, the second study was of shorter duration than the first.

In this paper, we describe the Geometry Explanation Tutor and illustrate its
capabilities. We present the results from the second classroom study and discuss their
implications.



1. Student: the bottom angles are the same

2. Tutor: You are getting there, but you need to be more precise. Are base angles always congruent?

3. Student: the bottom angles are congruent

4. Tutor: Base angles in what type of geometric figure are congruent?

5. Student: the bottom angles in an isosceles triangle are congruent

6. Tutor: [accepts as correct and complete explanation by means of implicit feedback]

1. Student: three angles in an isosceles triangle sum to 180 degrees

2. Tutor: Your explanation is close to being perfect. Except for the following: your explanation
should not be specifically about isosceles triangles. Better delete that from your
explanation.

3. Student: the sum of the three angles in all triangles is 180 degrees

4. Tutor: [accepts as correct and complete explanation by means of implicit feedback]

Figure 1: Two dialogues that students had with the Geometry Explanation Tutor, focused on the Isosceles
Triangle Theorem and the Triangle Sum theorem.

The Geometry Explanation Tutor

The Geometry Explanation Tutor is based on the Geometry Cognitive Tutor, which is an
integrated part of a full-year geometry course. The course and sofware together have been
shown to be better than typical classroom instruction (Koedinger, Corbett, Ritter, &
Shapiro, 2000). The Geometry Explanation Tutor focuses on one unit of the tutor
curriculum, the Angles unit, which deals with the properties of angles in various types of
diagram configurations. The problems that the tutor presents to students typically involve a
diagram and given angle measures. The student is then asked to find certain unknown angle
measures. The tutor provides assistance for problem solving in the form of context-sensitive
hints and feedback, on solutions as well as intermediate steps. In addition, it supports self-
explanation by means of a restricted form of dialogue.

Example student-tutor dialogues

The Geometry Explanation Tutor requires that students provide general explanations of
their problem-solving steps in their own words and engages them in a restricted form of
dialogue, illustrated in Figures 1 and 2, to help them improve their explanations. All three
dialogues shown in these figures are actual dialogues of students working with the
Geometry Explanation Tutor, collected during the evaluation study described in this paper.
The dialogues are not representative of the complete set that was collected during the
experiment; they show the tutor at its best. They were selected because they
illustrateimportant capabilities of the system. When the students focus on the right
geometry rule, the system helps them to state it at the right level of generality. For example,
when students state overly general rules, as they tend to do, the tutor helps them to add the
missing conditions, as is illustrated in the first example in Figure 1. When students state an
overly specific rule, as in the second example in Figure 1, the tutor helps them make it more
general. The tutor will also make it clear when the student focuses on the wrong rule or
seems to focus on irrelevant concepts, as illustrated in Figure 2.

The dialogues presented in Figures 1 and 2 illustrate the hypothesized advantages
and disadvantages of dialogue over menus, discussed in the previous section. Let us contrast
these dialogues with a system in which students can explain their reasoning by means of a
menu from which they could select the name of a problem-solving principle that justifies



1. Student: in an isosceles triangle, base angles are the same

2. Tutor: You gave a correct statement of a geometry rule, but that rule is not needed here.Please
focus on a different rule.

3. Student: interior angles are congruent

4. Tutor: You may be thinking of the wrong geometry rule. Please focus on a different rule.

5. Student: when two parallel lines are cut by a transversal, the interior angles are congruent

6. Tutor: Your explanation looks good. However, you do not need to talk about interior angles
here. So it is better to delete or change this part.

7. Student: when two parallel lines are cut by a transversal, the exterior angles are congruent

8. Tutor: Yes, you are on the right track. One thing, though: mentioning exterior angles here is

not correct. So you should probably change that part of your explanation.
9. Student: when two parallel lines are cut by a transversal, the corresponding angles are congruent
10. Tutor: [accepts as correct and complete explanation by means of implicit feedback]

Figure 2: Example dialogue between a student and the Geometry Explanation Tutor

the step (i.e., geometry definitions and theorems). Such a system was used as the control
condition in the experiment reported in this paper. In the two dialogues in Figure 1, the
students focused on the right geometry rule right from the start. If the same students had
explained the same steps by means of a menu, it is likely that they would have selected the
right rule from the menu at the first try, leaving the tutor with the impression that they
could explain their reasoning adequately. On the other hand, during the two dialogues shown
it becomes clear that they do not have a solid understanding of the geometry rules in
question or at least, are not able to state them adequately. In the course of these dialogues,
the system focuses the students’ attention on certain features of the problem that at first
the students did not seem to recognize as being crucial to their explanation. It seems quite
plausible that by pointing out specific elements that were missing from the students’
explanation, the system helped the student solidify their understanding. More generally, it
seemes plausible that the exemplified kinds of dialogues have a positive effect on students’
learning outcomes, as compared to explaining by means of a menu.

On the other hand, keyboard-to-keyboard dialogue is likely to take more time than
explaining by means of a menu. This hypothesized disadvantage of dialogues is perhaps
illustrated in the dialogue shown in Figure 2. In constrast to what happened in the previous
two example dialogues, the student does not quickly focus on the right geometry rule, but
once she does, the explanation is complete and accurate at the first try. The analogous
interaction with a menu-driven interface (i.e.,selecting the same sequence of geometry rules
from a menu: Isosceles Triangle Theorem, Alternate Interior Angles Theorem, Alternate
Exterior Angles Theorem, Corresponding Angles Theorem) would probably have taken less
time. Bu then again, the menu-driven interaction misses some of the attractive properties of
natural language dialogue: In the dialogue in Figure 2 the student mentions an important
feature of the problem, namely, that it involves parallel lines intersected by a transversal,
that probably would have been less salient in a simple menu-driven interaction.

Architecture of the Geometry Explanation Tutor

The system’s architecture has been described in more detail elsewhere (Aleven,
Popescu, & Koedinger, 2001), so here we provide only a brief outline. The system is built
on top of an existing Cognitive Tutor for geometry problem solving, the Geometry
Cognitive Tutor. As all Cognitive Tutors do (Anderson, Corbett, Koedinger, & Pelletier,
1995), the Geometry Explanation Tutor uses a cognitive model, in the form of production
rules, to interpret the students’ problem-solving steps (i.e., their calculations of unknown



angle measures in diagrams). To evaluate and respond to student explanations, it uses a
knowledge-based natural language understanding (NLU) component, described in more
detail in Popescu, Aleven, and Koedinger (in press), combined with a simple dialogue
management algorithm. Each student input is assumed to be an attempt at stating an
explanation and is processed in three steps:

1. Create semantic representation—First, the system parses the student’s explanation,
using the LCFLEX left-corner chart parser (Rosé & Lavie, 1999) and simultaneously creates
a representation of the semantic content of the explanation, implemented in the Loom term
description logic system (MacGregor, 1991).

2. Classify the semantic representation—Next, the system (specifically, Loom’s
classifier) classifies the semantic representation. For this purpose, the system has an
“Explanation Hierarchy,” a fine-grained set of approximately 200 explanation categories,
also defined in Loom. The categories represent common ways in which students state
incomplete or incorrect explanations. The set of categories was developed in a data-driven
manner, by analysis of several corpora of student explanations. Attached to each category is
a sequence of (canned) messages that constitute appropriate feedback when an explanation
classifies under that category.

3. Generate feedback—Finally, the system decides what feedback to give based on (a)
the set of categories under which the explanation was classified and (b) the set of geometry
rules (definitions and theorems) that can be used to justify the current step—the system
determines which geometry rules have that property by running its cognitive model for
geometry problem solving. It produces feedback as follows:

First, if the set of explanation categories indicates that the student’s explanation
contains any errors of commission, that is, if the explanation mentions any geometric
concepts that are not relevant to the correct geometry rules, the tutor points out the
concept that need not or should not be mentioned (see for example, Figure 1, second
dialogue, step 2, or Figure 2, steps 6 and 8). If the explanation contains no content related to
any of the correct rules, the tutor points out that the student is focusing on the wrong rule
entirely (e.g, Figure 2, steps 2 and 4).

Second, if the set of categories under which the student explanation is classified
contains a category representing a complete and correct explanation of a correct geometry
rule (i.e., a geometry rule that can be used to justify the current problem-solving step), the
tutor accepts the explanation by means of implicit feedback, as illustrated in the last step of
each of the three example dialogues shown in Figures 1 and 2.

Finally, if the explanation is an incomplete statement of a correct geometry rule, the
system provides feedback hinting at or indicating what is missing. It does so by selecting,
from the set of categories under which the explanation was classified, the one that is closest
to a category that represents a complete and correct statement of one of the correct
geometry rules. It then presents the first of the sequence of feedback messages attached to
that category (e.g., see Figure 1, first dialogue, step 2). If the student does not improve the
explanation in subsequent attempts, that is, if the next attempt at stating an explanation
yields the same set of explanation categories as the previous, the system selects the next
message in the sequence, thus providing more specific feedback. For example, in the first
dialogue in Figure 1, steps 1 and 3, the student changed the explanation from “the bottom
angles are the same” to “the bottom angles are congruent”. Since the tutor interprets those
two sentences as having the same meaning, it follows up after step 3 with the next more



specific feedback message attached to the relevant category, CONGRUENT-BASE-
ANGLES.

As mentioned, the system had been improved quite considerably before the
evaluation study reported in this paper, as compared to the previous study (Aleven,
Koedinger, & Popescu, in press). The speed with which the system’s NLU component
processes student explanations had been increased greatly, mainly by reducing ambiguity in
the grammar, the NLU component’s reference mechanism had been revamped, the coverage
of the grammar, lexicon, and ontology had been extended, the system’s strategy for
providing feedback had been extended so that it responds to commission errors and gives
higher priority to commission errors than to omission errors, the Explanation Hierarchy had
been expanded, and a significant number of feedback messages had been added to categories
in the Explanation Hierarchy.

A Classroom Evaluation S tudy

In the spring of 2003, we conducted an evaluation study in a suburban junior high school.
The purpose of the study was to test the hypothesis that students learn with deeper
understanding when they explain their problem-solving steps in their own words, as
compared to explaining by means of a menu. A secondary goal was to gather data on how
well the system is functioning. As mentioned, this experiment constitutes the second
elaborate classroom evaluation of the Geometry Explanation Tutor. The study took place
within the context of a course based on the Integrated Mathematics curriculum, which
includes concepts from both algebra and geometry. A total of 71 students participated in
the study, three class periods, all taught by the same teacher. All students were honors
students, meaning that they were the most gifted and diligent students within the given age
group and school. At the start of the experiment, the students were assigned to two
conditions, a “Dialogue” condition and a “Menu” condition. Two class periods were
assigned in their entirety to one of the conditions. The students in the third period were
assigned randomly to one of these conditions. Prior to the experiment, the teacher and
students covered the textbook chapter on proof, which involves many of the geometry
theorems that are covered in the tutor’s Angles unit. The first activity of the experiment
was an in-class, paper-and-pencil pre-test. During the same session, the first author
demonstrated the Geometry Explanation Tutor in front of the class, using a data projector.
All students then worked on the tutor for four 40-minute sessions. In the sixth and final
session, all participants took a paper-and-pencil post-test.

Two tutor versions were used. The students in the Dialogue condition used the
Geometry Explanation Tutor described above, in which they explain their reasoning steps in
a (restricted kind of) dialogue with the tutor. The students in the Menu condition used a
tutor version in which they could explain their steps by giving the name of a geometry
definition or theorem. They could either type the name or select it from an on-line Glossary
of geometry knowledge. The Glossary listed the relevant geometry theorems and definitions
and provided further information about each rule upon the student’s request. The Glossary
was available freely to the students in both conditions, but only for the students in the
Menu condition did it function as a menu from which to select rule names. The tutor
versions were the same in all other respects.
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Figure 3: Overall (left) and detailed (right) pre- and post test results

The pre-test and post-test included regular “Numeric Answer” and “Explanation”
items which were of the same type as the problems that students had encoutered during
their work with the tutor. They also included two types of transfer items in order to
measure any improvements in students’ understanding: In some test items, the students
were asked to judge whether there was enough information to find a particular unknown
quantity. Items that involved a quantity whose value could not be uniquely determined we
call “Not Enough Info” items. Items that dealt with a quantity whose value could be
determined, given the available information, were grouped with the Numeric Answer items.
We also included “Verbal” items, in which the students were given a general statement about
geometry (e.g., “the sum of supplementary angles is 90 degrees”) and were asked to say
whether the statement is correct and to make any necessary corrections.

Of the 71 students, 62 completed the pre-test and post-test. Of those, 46 students
worked on the tutor for at least 80 minutes, not considering idle time. We report the results
of those 46 students. The cutoff point of 80 minutes may seem somewhat arbitrary, but
none of the results noted below is very sensitive to the threshold used. The 46 students
included 21 students in the Dialogue condition and 25 students in the Menu condition.

Results

The pre-test and post-test scores did not differ much between the conditions (see Figure 3).
A repeated-measures ANOVA of students’ test-scores with independent factors condition,
test-time, and item type revealed a main effect of test time (F(1,44) = 15.7, p < .0005) but
no significant interaction between condition and test-time. Thus, the students in both
conditions improved and seemed to have learned about equally much from their respective
instruction.

The data about the student-tutor interactions, shown in Table 1 and Table 2,
provide some insight into how the experience of working with the tutor was different for



Table 1: Ondine measures related to the interactions that students had with the Geometry Explanation Tutor

Condition Time (mins) Nr. of Nr. of Expl  Answer Time  Expl Time
Answer Steps Steps (mins) (mins)

Dialogue 116+15 3449.8 3349.9 30+12 75+14

Menu 103+12 57+7.1 56+7.2 48+8.3 36+9.7

Table 2: More measures related to the interactions that students had with the Geometry Explanation Tutor

Condition Answer Expl Attempts/ Attempts/
%Correct %Correct Answer Expl

Dialogue 65413 2949.3 1.59+.28 3.60£1.5

Menu 6448.7 59411 1.58+.24 1.76+.40

the students in each of the two conditions. Overall, the students in the Dialogue condition
completed considerably fewer problem-solving and explanation steps than their
counterparts in the Menu condition (see Table 1). Further, the students in the Dialogue
condition spent a much greater proportion of their time explaining their problem-solving
steps. During their work on the tutor, the students in both conditions did equally well on
problem-solving steps (referred to as “Answer steps” in the two tables), that is, were
equally good at determining the measures of angles in the given problems. The students in
both conditions got an equal number of answers right without making any errors and also
needed the same number of attempts needed to find the right answer. With respect to the
explanation steps, however, there were considerable differences between the conditions.
The students in the Dialogue condition got fewer explanations right at the first attempt than
the students in the Menu condition and generally needed more attempts to arrrive at an
explanation that the tutor deemed correct.

Discussion

The on-line data are consistent with the expectation that explaining in one’s own words
takes more time and is harder than explaining by means of a menu. To some degree, the
difference may reflect imperfections in the system’s dialogue management strategy, but we
suspect that natural language self-explanation inherently is more difficult and time-
consuming than explaining by means of a menu. Clearly, if self-explanation in students’ own
words is to result in deeper learning than explaining by means of a menu, in the same
amount of time, students will have to get more out of each problem.

All in all, the results presented above provide no support for the hypothesis that
students learn better when they explain their problem-solving steps in their own words,
supported by dialogue, than when they explain by means of menus. If anything, they show
a slight advantage for the Menu condition, whose pre-test to post-test improvement was
.90 standard deviations, compared to .63 in the Dialogue condition, although as mentioned
we found no statistically significant difference between the conditions. The results of the
experiment therefore provide a further glimpse of evidence that supporting self-explanation
by means of a simple menu is quite effective in a domain like mathematics, where one can
easily identify a valid set of “reasons” in advance. As mentioned, in a previous experiment
it was shown that the simple menu condition is in itself better than a Cognitive Tutor that
supports problem-solving without explanation (Aleven & Koedinger, 2002).



While we find no evidence to confirm the main hypothesis of our research, we do
not think the results from the current experiment disconfirm that hypothesis either. In light
of the high pre-test scores, it seems that the students in this experiment were more
advanced than the typical target population of the Geometry Explanation Tutor. Wo do not
know whether they acquired their geometry knowledge in the context of earlier mathematics
courses or during the classroom instruction in the weeks leading up to the experiment
reported here. Regardless, it is possible that the students’ relatively high level of geometry
knowledge at the outset of the experiment obscured any differential effect that the two tutor
versions may have had. If explaining in one’s own words is more effective early on in
learning, one would expect to see a greater advantage of the Dialogue condition with
students who are not as well-prepared. The opposite effect however cannot be ruled out.

A second reason why we do not yet accept that the experiment disconfirmed the
given hypothesis is the state of development of the system. Overall, based on our informal
observations, the current experiment was a better experience for the students involved than
the previous (Aleven, Koedinger, & Popescu, in press). Differences in student population,
teachers, or system versions probably all contributed. The students in the second study
seemed more able and better prepared learners and generally seemed more motivated to
learn. The teacher involved in the second study seemed to enjoy a very good rapport with
the students. Finally, the system used in the second experiment had been improved quite
considerably. In particular, there was a very noticeable difference in the speed with which it
processed student explanations and it also seemed to be more accurate. The teacher clearly
shared our impression that the current classroom evaluation was a positive experience for
the students involved.

Nonetheless, there seems to be room for improvement in the system’s performance.
We are in the process of analysing the data about student-tutor interactions extensively in
order to get a sense for how well the system performed and how it can be improved. Our
analysis of the accuracy of the system’s NLU component (Popescu, Aleven, & Koedinger,
in press) indicates that the system is beginning to approximate the accuracy of human
raters, but that there is room for improvement. We are analyzing the data in a number of
additional ways. First, we are assessing the quality of the system’s feedback and analyzing
the causes of low-rated feedback. As we did in a previous study (Aleven, Popescu, &
Koedinger, 2002), we are looking at the relation between the feedback quality and the
amount of progress that the students make in the next attempt at improving their
explanations. We are studying the relation between the length of the dialogues that students’
had with the system and their learning results. Finally, we are identifying the causes of
lengthy dialogues, focusing on the 10% or 15% longest dialogues that we collected during
the study. The results of these analyses should provide a wealth of interesting data about
the particular strengths and weaknesses of knowledge-based natural language processing
combined with a simple dialogue management strategy. They will point the way towards
specific improvements that can be made.

Condusion

In a classroom study involving the Geometry Explanation Tutor, we found that there was
little difference in the learning results of students who explained their problem-solving steps
in a natural language dialogue with the system, compared to those who explained by means
of a menu. Thus, the experiment does not confirm the hypothesis that explaining in one’s
own words represents a more favorable trade-off between time spent and learning gains.



However, the students who participated in the experiment seemed better-prepared and
more able than the typical student in our target population. Further, our analyses of the
system’s performance indicate that there still is some room for improvement in the system,
although considerable progress has been made. Therefore, we still think that the main
research hypothesis is plausible. While the results of the current experiment indicate that
the hypothesized advantages of explaining in one’s own words are not pronounced for
learners with relatively high knowledge of the subject matter, they do not rule out a greater
effect for more average students.
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