

Contentious Claim?

AIED systems die, the only thing you can hand on to the next generation is information about the success (or lack of) of a current system

Without evaluation, there is no point in doing anything.....

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Me

- Why am I doing this?
- Background

 - Bsc (Hons) PsychologyMSc Artificial Intelligence
 - PhD Educational Cognitive Science
- Research Interests
 - The unique properties of learning with more than one representation
 - ITS authoring tools
- Conducted circa 20 evaluation studies in the last 10 yrs
- ◆ Main interest how can we understand more about human complex information processing by studying learners interacting with innovative technologies

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Today

- Why evaluate
- What questions should you ask to design an evaluation
 - What do I want to achieve
 - What can I measure
 - What is an appropriate design?
 - What should I compare my system to?
 - What is an appropriate context in which to evaluate
- Misc issues
- Summary and Conclusions

uation Methods for Learning Environments: A tutorial for AIED 2003.

Why evaluate?

- To improve usability
- ◆To enhance learning outcomes
- ◆To increase learning efficiency
- ◆To inform theory
- ◆To increase user acceptance
- To sell your ILE
- To help develop the field

Times they are a changing < 1980s 1980s AIED ITS 1993 2002 16% papers 38% papers Implemented To be report report implemented 3 of my evaluation. evaluation. friends used 4% statistical 28% it and..... analyses statistical analyses Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Questions to answer

- What do I want to do with the information
 - Informing design
 - Choosing between alternatives
 - Credit assignment problem
 - Informing about context of use
- What are appropriate forms of measurement?
- ♦ What is an appropriate design?
- What is an appropriate form of comparison?
- What is an appropriate context

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Two main types

- To inform design
 - Formative evaluation
 - E.g. Heuristic Evaluation, Cognitive Walkthrough
 - http://www.psychology.nottingham.ac.uk/staff/sea/c8cxce/han dout4.pdf
 - Should the same usability heuristics be used in educational systems as are used in other computer-based systems
 - E.g. Squires & Preece (1999), Gilmore (1996)
- ◆ To assess end product
 - To assess end product or discover how it should be used
 - Summative evaluation
 - E.g. Experimental, Quasi-experimental

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

naaron Ainsworth

Questions to answer

- What do I want to do with the information
 - Informing design
 - Choosing between alternatives
 - Credit assignment problem
 - Informing about context of use
- **♦** What are appropriate forms of measurement?
- What is an appropriate design?
- What is an appropriate form of comparison?
- What is an appropriate context

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainsworth

Common Measures (Dependent Variables)

- Learning gains
 - Post-test Pre-test
 - (Post-test Pre-test)/Pre-test: to account for high performers
- Learning efficiency
 - I.E does it reduce time spent learning
- ♦ How the system is used in practice (and by whom)
 - ILEs can't help if learners don't use them!
 - What features are used
- User's attitudes
 - Beware happy sheets
- Cost savings
- ◆ Teachbacks
 - How well can learners now teach what they have learnt

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainswort

Learning Gains: Effect Size

(Gain in Experimental – Gain in Control)/ St Dev in Control

Comparison	Ratio	Effect
Classroom teaching v Expert Tutoring	1:30 v 1:1	2 sd
Classroom teaching v Non Expert Tutoring	1:30 v 1:1	0.4 sd
Classroom teaching v Computer Tutoring	1:30 v C:1	?

A 2 sigma effects means that 98% of students receiving expert tutoring are likely do to better than students receiving classroom instruction

Evaluation metrious for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainsworth

Interaction Data

- Time on task
- Progression through curriculum
- Use of system features (e.g. glossary, notepad, model answers)
- Question Performance (right, wrong, number of attempts..)
- Amount of help sought or provided

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Process Data

- Protocols
- Dialogue turns
- Gesture and Non-verbal behaviour
- Eye movement data
- ◆ Poor men's eye tracker (e.g. Conatt & Van-Lehn, Romero, Cox & Du Boula)

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainsworth

DV Summary

- Rarely the case that a single DV will be sufficient
- Could look for more innovative outcome measures (e.g. learn with complex simulation but then multichoice post-test)
- Beware the Law of Gross Measures
 - Subtle questions require subtle DVs which may be impossible in many situations
- Interaction data often got for free and it's a crime not to look at it! Process data hard work but often worth it.
- Capturing interaction data rarely changes learners' experiences, but capturing process data often does.

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainsworth

Questions to answer

- ♦ What do I want to do with the information
 - Informing design
 - Choosing between alternatives
 - Informing about context of use
- What are appropriate forms of measurement?
- What is an appropriate design?
- What is an appropriate form of comparison?
- What is an appropriate context

Evaluation Methods for Learning Environments: A tutorial for AIFD 2003

Shaaron Ainsworth

Two Types of Experimental Design

Experimental

- State a causal hypothesis
- Manipulate independent variable
- Assign subjects randomly to groups
- Use systematic procedures to test hypothesised causal relationships
- Use specific controls to ensure validity

Quasi – experimental

- State a causal hypothesis
- Include at least 2 levels of the independent variable
 - we may not be able to manipulate it
- Cannot assign subjects randomly to groups
- Use specific procedures for testing hypotheses
- Use some controls to ensure validity

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Potential Biases in Design

- Experimenter effects
 - Expectancy effects during intervention
 - E.g. Inadvertently supporting students in your "preferred" condition
 - Expectancy effects on analysis
 - E.g. throwing away outliers inappropriately
- Subject biases
 - Hawthorne effect
 - A distortion of research results caused by the response of subjects to the special attention they receive from researchers

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Choosing Between Designs

Validity

- Construct validity
 - Is it measuring what it's supposed to?
- External validity
 - Is it valid for this population?
- Ecological validity
 - Is it representative of the context?

Reliability

- Would the same test produce the same results if
 - Tested by someone else?
 - Tested in a different context?
 - Tested at a different time?

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Prototypical designs

- ♠ (intervention) post-test
- ♦ Pre (intervention) post-test
- ◆ Pre (intervention) post-test delayed post-test
- Interrupted time-series
- Cross-over

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainsworth

Post-test

- Advantages
 - Quick
- Disadvantages
 - A lot!
 - Need random allocation to conditions
 - Can't account for influence of prior knowledge on perfomance or system use

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Pre-test to Post-test ◆ Advantages ■ Better than just measuring post-test as can help explain why some sorts of learners improve more than others ■ Can show whether prior knowledge is related to how system is used ■ If marked prior to study can be used to allocate subjects to groups such that each group has a similar distribution of scores ◆ Disadvantages ■ No long term results ■ Can not tell when improvement occurred if long term intervention

ШП

Pre-test to Post-test to Delayed Post-test

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Advantages

- Does improvement maintain?
- Some results may only manifest sometime after intervention (e.g. Metacognitive training)
- Different interventions may have different results at post-test and delayed post-test (e.g. individual and collaborative learning)

Disadvantages

- Practical
- Often find an across the board gentle drop off

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Interrupted Time-Series Design

Advantages

- Time scale of learning
- Ceiling effects

Disadvantages

- Time-consuming
- Effects of repeated testing

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

- Advantages
 - Controls for the (often huge) differences between subjects
 - · Each subject is their own control
 - May reveal order effects
- Disadvantages
 - Four groups of subjects rather than two!
 - Statistically complex predicting at least a 3 way interaction
- Never come across one yet in AIED!

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainswort

Partial Cross-over

- Same as full cross over but
 - Advantages
 - less complex and subject hungry
 - Disadvantages
 - less revealing of order effects

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainsworth

Questions to answer

- ♦ What do I want to do with the information
 - Informing design
 - Choosing between alternatives
 - Informing about context of use
- What are appropriate forms of measurement?
- What is an appropriate design?
- ♦ What is an appropriate form of comparison?
- What is an appropriate context

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainsworth

Nature of Comparison

- ◆ ILE alone
- ♦ ILE v non-interventional control
- ♦ ILE v Classroom
- ♦ ILE_(a) v ILE_(b) (within system)
- ♦ ILE v Ablated ILE
- Mixed models

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

ILE alone

- Examples
 - Smithtown Shute & Glaser (1990)
 - Cox & Brna (1995) SWITCHER
 - Van Labeke & Ainsworth (2002) DEMIST
- Uses
 - Does something about the learner or the system predict learning outcomes?
 - E.g. Do learners with high or low prior knowledge benefit more?
 - E.g. Does reading help messages lead to better performance?
- Disadvantages
 - No comparative data is this is good way of teaching??
 - Identifying key variables to measure

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

haaron Ainswortl

Smithtown — Shute & Glaser (1990)

- Guided discovery environment to scientific enquiry skills and principles of basic economics
 - Notebook, grapher, hypothesis maker
 - Explorations & experiments
- Issue-based tutoring to detect and remediate scientific method
- Students who did well with Smithtown (n = 530) engaged in goal or hypothesis driven activity.

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

aaron Ainsworth

SwitchER - Cox & Brna (1995)

- Solving constraint satisfaction problems by constructing representations.
- **♦** N = 16
- Learners tended to switch between representations, particularly at impasses
- Idiosyncratic representations associated with poorer performance
- (Performance on system in this case is the learning measure)

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainswort

DEMIST - Van Labeke & Ainsworth (2002)

- Learners (N = 20) using a multi-representational simulation to learning population biology
- Free Discovery with minimal exercises

- No significant relationship between use of representations and
 - Pre-test scores, Post-test scores, Prior experience with maths/biology
 - Stated preference as to visualiser/verbaliser
- Conclusion: Inappropriate method as can't answer "WHY"
 - What does spending a lot of time with a representation mean?
 - Need for protocols

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainswort

ILE v non-interventional control

- Examples
 - COPPERS Ainsworth et al (1998)
- Uses
 - Is this a better way of teaching something than not teaching it at all?
 - Rules out improvement due to repeated testing
- Disadvantages
 - Often a no-brainer!
 - Does not answer what features of the system lead to learning
 - Ethical ?

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainsworth

COPPERS - Ainsworth et al (1998)

- Can children learn to give multiple solutions to the same question (Simplified Design)
- ♦ 20 eight to 9 yr olds

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

COPPERS Results

- •Children don't get better at this just because they are asked to do it repeatedly.
- •A simple intervention can dramatically improve performance

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

haaron Ainswort

ILE v Classroom

- Examples
 - LISPITS (Anderson & Corbett)
 - Smithtown (Shute & Glaser, 1990)
 - Sherlock (Lesgold et al, 1993)
 - PAT (Koedinger et al, 1997)
 - ISIS (Meyer et al, 1999)
- Uses
 - Proof of concept
 - Real world validity
- Disadvantages
 - Classrooms and ILEs differ in some many ways, what can we truly conclude?

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

naaron Ainsworth

LISPITS Anderson

- Classic Model and Knowledge tracing tutor: the ITS!
- Novices with LISPITS or conventional teaching or just textbook (N = 30)
 - Learning Outcomes: All groups did equivalently well on post test, but some subjects on own not complete test
 - Learning Efficiency: LISPITS (11.4 hrs): Teacher (15 hours): Textbook (26.5 hours)
- ♦ More experienced beginners on LISP course: exercises vs. LISPITS (N = 20)
 - Learning Outcomes LISPITS group did 43% better on post-test
 - Learning Efficiency: LISPITS group finished 30% faster

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainswort

Smithtown V Class Teaching

- Comparison with class teaching (n = 30)
 - Learning Outcomes: Did as well as conventionally taught student
 - Learning Efficiency: Finished in about half the time (5hrs vs. 11hrs)

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainsworth

SHERLOCK — Lesgold et al (1992)

- Intelligent training system
 - Airforce technicians
 - Complex piece of electronics test gear
- ◆ Interface & overall training context
- Model of student under instruction adjust level of and specificity of feedback
- Comparisons with conventional training
- Air force evaluation 20-25 hours on SHERLOCK similar 4 years job experience
- Pre/post comparison over 12 days (N = 64)
 - Learning outcomes: experimental group solved significantly more problems in post test
 - quality of problem-solving judged more expert

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainsworth

Evaluation of SHERLOCK

- $\ensuremath{\clubsuit}$ Comparisons with conventional training
- Airforce evaluation 20-25 hours on SHERLOCK similar 4 years job experience
- ♦ Pre/post comparison over 12 days (N = 64)
 - experimental group solved significantly more problems in post test
 - quality of problem-solving more expert

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

PAT — Koedinger et al (1997)

- Cognitive Tutor with Model & Knowledge tracing
 - Practical Algebra System
 - Pittsburgh Urban Mathematics Project
- Detailed model of student under instruction
 - Extensive prior analysis of learning algebra

	Control Group	PAT Group	F value significance	sigma
Iowa Algebra	.46 (.17)	.52 (.19)	F(2,398) = 17.0	0.3
Aptitude	80	287	P < .0001	
Math SAT	.27 (.14)	.32 (.16)	F(2,205) = 5.1	0.3
Subset	44	127	P < .01	
Problem	.22 (.22)	.39 (.33)	F(2,186) = 5.3	0.7
Situation Test	42	127	P < .01	
Representations	.15 (.18)	.37 (.32)	F(2,183) = 13.4	1.2
Test	44	124	P < .0001	

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

ISIS Meyer et al (1999)

- Simulation-based tutor for scientific enquiry skills
- generating hypotheses, designing and conducting experiments, drawing conclusions, accepting/rejecting hypotheses
- ♦ Quasi-expt. 3 studies: N = 1553, N = 1594, N = 488
- Learning Outcomes: ISIS generally better than
- The further through the ISIS curriculum the greater the learning gains
 - effective time on task? ability?
- Mistakes
 - Too many subjects!
 - Not sophisticated enough analyses huge wasted opportunity

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

$ILE_{(a)}$ v $ILE_{(b)}$ (within system)

- Examples
 - PACT Aleven et al (1999)
 - CENTS Ainsworth et al (2002)
 - Galapagos Lucken et al (2001)
 - Animal Watch Arroyo et al (1999,2000)

Uses

- Much tauter design, e.g. nullifies Hawthorne effect
- Identifies what key system components add to learning
- Aptitude by treatment interactions
- Disadvantages
 - Identifying key features to vary could be very time consumina!

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

PACT – Aleven et al (1999, 2002)

- Another CMU cognitive tutor Geometry
- ◆ Two versions a Self-Explanation v Answer only
- ◆ Expt 1 (N = 23) Significantly greater gains for SE
- ◆ Expt 2 (N = 43) Overall suspect non significant interaction! But SE students doing better on harder problems.

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

CENTS - Ainsworth et al (2002)

- ◆ Guided practice environment to teach 10-12 yr old children the role of number sense in estimation
- ◆ Issue explored what format of representation best supports learning

Which do you think will be best? **Pictures** Maths Mixed

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

MEN0 - Luckin et al (2001)

- To investigate the role of narrative in the comprehension of educational interactive media programmes (e.g. Galapagos)
- Principles of Darwin's theory of natural selection.
- Task: use the notepad to construct an explanation of the variations in the wildlife on the islands.
- Three versions: same content different structure

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

haaron Ainswort

'Galapagos': three version

	NARRATIVE GUIDANCE	SUPPORT FOR NARRATIVE CONSTRUCTION
LINEAR	recognisable, linear structure easy navigation limited interaction implicit guidance in interface design (eg order of items)	notepad model answer
RESOURCE- BASED LEARNING (RBL)	no explicit narrative guidance implicit guidance in interface design	easily accessible statement of task
GUIDED DISCOVERY LEARNING (GDL)	three text guides offer routes through material and stimulate enquiry implicit guidance in interface design	• script

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

naaron Ainsworth

Dialogue Categories

- $\begin{tabular}{ll} \blacksquare Non-Task: Navigational/Operational ``e.g. ``click on one' ``play'' \end{tabular}$
- Task: Mechanics of getting the task done e.g. "shall I type?"
- Content
 - Sub-Goal e.g. "why do we want to take notes?"
 - Reaction to Multi Media e.g. "Its really cool"
 - Answer Construction e.g. "Well they are all very similar aren't they, just with slightly different
 - Model Answer e.g. "so we have missed that massive chunk out"

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainsworth

Findings

- $\ensuremath{\blacklozenge}$ Twice as much CONTENT as NON-TASK or TASK talk.
- Contentful discussions do not happen while learners are looking solely at the content related sections of the CD-ROM
 - Linear users conducted more CONTENT talk whilst using the Notepad whilst viewing the content sections of the CD-ROM, whilst RBL and GDL learners conducted much more CONTENT talk with the content sections of the CD-ROM themselves.
- The notepad prompts discussion about the practicalities of answer construction

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainswortl

Galapagos Conclusions

- Simple interface design elicited a much higher ratio of ontask to procedural discussion than commercial interfaces;
- Goal, Reminders, Notepad, Model Answer, and Guide Features were all effective, as evidenced by the use all groups made of them, and the high proportion of on-task talk they elicited;
- Model Answer & Notepad prompted learners to discuss answer construction, content features alone did not;
- Learners were much more likely to refer back to other sections as they constructed their answers within the learner-controlled resource-based and guided discovery versions, and therefore tended to use quotes from the material in their notes, which linear users did not do.

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainsworth

ILE v Ablated ILE

- Ablation experiments remove particular design features and performance of the systems compared
- Examples
 - VCR Tutor Mark & Greer (1995)
 - StatLady Shute (1995)
 - Dial-A-Plant Lester et al (1997)
 - Luckin & du Boulay (1999)
- Uses
 - What is the added benefit of AI
- Disadvantages
 - System may not be modular

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Animal Watch – Arroyo et al

- ♦ ITS for teaching arithmetic in the context of biology
- Hint Symbolism (symbolic v concrete) & Hint Interactivity (learning by doing v learning by being told)
- Attitude by treatment exploration Cognitive Development & Gender (n = 60)
- Some results
 - Girls do better with interactive hints
 - High cognitive levels better with symbolic & interactive hints

Some value of the pack year radioese currelly for the top, so make each that you have come for all year packs, which and shees. The parts will take up 1 of the subcase and your shirts will take up 1 of the subcase and your shirts will take up 1 of the subcase.		Thight the common decombater will be from one seed to convert 1, and 1, into capacitie flustross that have 4 as a decombator. White here are equivalent flustros for 1 and 1
Together, how much of the space in the subcase will your parts and shints take up?		1 $+\frac{ \xi }{4}$
Enter a Fraction	1	

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Aineworth

VCR Tutor — Mark & Greer

- Intelligent tutoring system to teach operation of (simulated) Video Tape Recorder
- ♦ Four versions : 'Dumb' to 'Clever'
 - conceptual as well as procedural feedback
 - model-tracing to allow flexibility of problem solution
 - recognise and tutor certain misconceptions
- ◆ Compare pre/post test (N = 76)
- Increasing intelligence produced in post-test
 - solutions with fewer steps
 - solutions with fewer errors
 - faster performance

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainsworth

StatLady — Shute (1995)

- Tutoring system for elementary statistics
- Unintelligent version
 - Same curriculum for all learners
 - Fixed thresholds for progress
 - Fixed regime of feedback messages on errors
- Intelligent version
 - More detailed knowledge representation Individualized sequence of problems
 - Much more focused feedback and remediation
- Unintelligent version produced learning outcomes as good as experienced lecturer (N = 103)
- Learning outcomes greater with intelligent version produced but lesser learning efficiency (N = 100)

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainswort

Evaluation of StatLady

- Unintelligent version produced pre/post tests differences as good as experienced lecturer (N = 103)
- Intelligent version produced better pre/post test differences than unintelligent version, but with longer time on task (N = 100)

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainsworth

Dial-A-Plant – Lester et al.

- Botanical anatomy
- Pedagogical agent Herman the Bug
- Advice response types
 - Muted
 - Task-Specific Verbal (concrete)
 - Principle-Based verbal (abstract)
 - Principle-Based Animated /Verbal
 - Fully Expressive

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainsworth

Evaluation of Dial-A-Plant

- Reduced errors on complex problems
 - Fully expressive agent did best
 - Task specific verbal did next best
- Benefit of agent increases with problem complexity

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Diff	erentiate	ed REDEE	M ITSs		
	Group A	Group B	Group C	Group D	Group E
Content Difficulty Amount	difficult 44 & 60 pages	quite difficult 44 & 50 pages	easier 32 & 44 pages	easier 30 & 44 pages	easier 30 & 44 pages
Questions Types Difficulty Amount	all types med. & hard 36 & 39 ?s all	all types med. & hard 36 & 39 ?s all	all types easy & med. 24 & 24 ?s 1 per page	no matching easy & med. 23 & 24 ?s 1 per page	no matching easy & med. 23 & 24 ?s 1 per page
Strategy Autonomy Help Answers- deduced	choose sections selects ? type help on error multiple attempts at ?	choose sections selects ?s help on error multiple attempts at ?	no choice ? after section help on error multiple attempts at ?	no choice ? after section help on error & request 2 attempts at ?	no choice ? after page help on error & request 2 attempts at ?
	Evaluation Metho	ods for Learning Enviror	nments: A tutorial for	AIED 2003. Sh	aaron Ainsworth

Results: Category by Learning Outcomes

Significant effects of time and category No significant interactions

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Process Measures

- Analysis showed that students improved but the amount was neither substantial nor influenced by the type of system.
- A great deal of variability in improvement
- Hence, we explored a number of measures of system use to determine how learners were using the system which influenced what they learnt.

Question performance on the system

	Pre-test	Post-test	Improvement
Right 1st Time	+0.327	+0.636	+0.433
	(p<0.004)	(p<0.005)	(p<0.005)

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainsworth

Results: Process Measures

 Time (adjusted by number of pages) correlated with improvement for REDEEM not CBT

REDEEM gen1,
 REDEEM gen2,
 CBT gen1,
 CBT gen2,
 CBT gen2,
 r = 0.262, p = 0.067
 r = 0.099, p = 0.288
 CBT gen2,
 r = 0.043, p = 0.397

 Significant correlation between word count of notes in on-line tool and post-test performance (r = 0.314, p = 0.006).

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainsworth

Summary of Four Studies

Study	Subjects	ITSs	Gain	Effect size
Genetics at Uni.	86, 14-16yrs	5 ITSs: different content & strategies	RED = 10% CBT = 8%	0.21
Genetics in School	15, 14-16 yrs	3 ITSs: different content	RED = 16% CBT = 8%	0.82 *
Undergrad	25, 20-28 yrs	1 ITS	RED = 53% CBT = 32%	1.11 *
RAF	16, 20-45 yrs	1 ITSs	RED = 47% CBT = 29%	0.88 *

uation Methods for Learning Environments: A tutorial for AIED 2003. Shaaron Ainsw

Questions to answer

- $\ensuremath{\clubsuit}$ What do I want to do with the information
 - Informing design
 - Choosing between alternatives
 - Informing about context of use
- What are appropriate forms of measurement?
- What is an appropriate design?
- What is an appropriate form of comparison?
- What is an appropriate context

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

(a) Expt in Laboratory with experimental subjects

(b) Expt in Laboratory with 'real' subjects

(c) Expt in 'real' environment with 'real' subjects

(d) Quasi-experiment in 'real' environment with 'real' subjects

(e) For Real!

Increasing Validity

Evaluation Methods for Learning Environments: A Lutorial for ALED 2003. Shaaron Ainsworth

Choosing a context

- There is no "perfect" context! Real is not necessarily better.
- I try to avoid (a) but can't always...(e.g. this conference!)
- Pick depending on access and nature of question
 - E.g. beware expts which need effort in artificial situations
 Why should subjects who have no need to learn something apart from payment or course credit, work hard at learning?
 - Remember the Law of Gross Measures, time data often impossible in classrooms contexts

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

haaron Ainsworth

For Real: Integrated Learning Systems Wood, et al (1999)

- An ILS is made up of two components, CAI modules and a Management System. Individualised learning programme with teacher reports, some remediation and immediate feedback.
- Evaluation in many schools, very large N
- Positive learning outcomes in basic numeracy but not for basic literacy, some evidence of gains on more extensive maths tests
- No transfer to standard educational attainment measures and some evidence of degraded performance
- ◆ Positive attitudes to ILS expressed by teachers & pupils (80%+)
- Attitudes were not linked to assessed learning outcomes.
- Patterns of usage had significant effects on outcomes
- Overall evaluation probably saved UK from massively investing in inappropriate software

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

aaron Aincworth

Miscellaneous Issues

- Other sorts of design/comparisons
- Evaluating other sorts of AIED systems
 - Authoring Tools
 - Part of Systems

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainsworth

Other designs

- Bystander Turing Test
 - Useful when outcome data not possible
 - Can you tell the difference between a human and a computer?
 - May be particularly useful for examining specific components
 - But susceptible to poor judgement
 - E.g. Auto-tutor (Person & Graesser, 2002)
- Simulated Students
 - E.g. Evaluating the effectiveness of different strategies/curriculum by running on simulated students
 - Unlimited number of patient, uncomplaining subjects!
 - But, how valid are the assumptions in your Sim Students
 - Still rare
 - E.g. see Van Lehn et al (1994), McClaren & Koedinger (2002)

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

aaron Ainsworth

Other comparisons

- Predicted outcomes and norms
 - Fitz-Gibbons ALIS, YELIS
 - valued added analyses of individual performance (educational history, attiude, gender, ses) with predictive power
 - (see http://cem.dur.ac.uk/software/files/durham_report.pdf)
- MUC Style evaluations
 - The Learning Open (http://gs260.sp.cs.cmu.edu/LearningOpen2003/default.htm)

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainsworth

Authoring Tools: Evaluation criteria

- the diversity of the subject matter and teaching styles that an authoring environment supports;
- the cost effectiveness of those tools
- the depth and sophistication of the ITSs that the result from the authoring process
- the ease with which the tools can be used.
- the learning outcomes and experiences of students with the ITS
- the way the tools support articulation and representation of teaching knowledge
- the way that results from evaluations can inform the science base.

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Problems in Evaluating ITSATs

- Evaluating an ITS Authoring Tool is particularly difficult.
- Need to evaluate the author's experiences as well as the students
- If your tool is to be accepted, it must be usable, functional and effective.
- But the effectiveness of an ITS created with an ITSAT depends on author, authoring tools and ITS shell.
 - E.g. if your ITS is not effective, is this because of the constraints provided by the ITSAT, decisions that an author made within those constraints, or the Shell's interpretation of these results
- Massive credit assignment problem

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainsworth

Parts of System

- ◆ E.g. Dialogue component, Student Model
- Particularly difficult as many system features are codependent
 - E.g. Effectiveness of new Student modelling technique may depend upon remediation
- Wizard of Oz
- Sensitivity Analysis

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainsworth

Summary

- What not to do
- Issues to beware
- What to do
 - Good habits
- Lessons Learned

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainsworth

Beware of...

- Evaluating on an inappropriate population
 - E.g. Barnard & Sandberg (1996) evaluated a system to encourage learners to understand the tidal system by self-explanation.
 - Their subjects wouldn't self-explain! Problem with the system or with evaluating on 14-16 yr material on undergrads who need not learn this
- Two many or two few subjects
 - Normally see too few (try to keep a minimum of 12 per cell) but this will change depending on variability
 - Too many also a problem want to find differences that are educationally as well as statistically significant
- Inappropriate control
 - Most of the time comparison with traditional teaching/non intervention control not helpful – huge credit assignment problem

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainsworth

Beware of... Inappropriate Generalisations

Learner Characteristics

Task Characteristics

- Ability levels
- Prior knowledge
- Developmental levels
- Gender
- Attitudes
- Motivation
- Procedural v conceptual learning
- Collaborative v Individual
- ◆ Time on task
- ◆ Timescale of intervention
- Frequency of use
 - e.g. 10 minutes a day v 1 hour a week

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainsworth

Beware of...

- Evaluating something else
 - Murray et al (2001) Make sure system features are visible if you want to see what their effects are.
- Inappropriate DVs/ lack of data
 - E.g. why were some DEMIST learners successful and some not!
- Context effects
 - ILES are only one part of a complex system
 - It's the whole shebang!
- Relying only on attitude data
 - E.g. teachers and pupils very positive in ILS studies but in some cases actually harming exam performance
- Inappropriate outcomes measures
 - If your system gives truly individualised experiences, how do you design a post-test?

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Good habits

- More use of formative evaluation in development
- Multiple ddependent variables with matched learning outcomes measures to system goals
- Use of process and interaction measures
- Pre-testing
 - Both for allocation of subjects to condition and for ATI
- Effect size analysis
 - To compare your results to others

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

Shaaron Ainsworth

Good habits

- Build lots of time in
 - A variant of Hofstadter's law "Evaluation takes four times as long as you think it is going to, even when you've taken Hofstadter's law into account".
- Conduct multiple evaluation studies
- Consider designs other than just pre to post
- Recognise the value of evaluation studies
- Multi-disciplinary teams
- Publishing negative as well as positive data
- Running longer evaluation studies with increased periods of intervention and delayed post-tests

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.

haaron Ainsworth

AIED Evaluations: Lessons Learned

- Some evidence for value of "I" in "AIED"
- Reduces time on task, e.g. Anderson
- Produces better learning outcomes
 - than conventional teaching e.g. Lesgold, Anderson, Shute,, Meyer, Koedinger
 - Than less clever systems e.g. Ainsworth, Shute, Luckin, Lester, Mark & Greer
 - For certain types of learner, e.g. Shute, Luckin, Arroyo
 - In certain contexts, e.g. Koedinger, Wood
- Why
 - Micro-adaptation
 - Macro-adaptation
 - Interactivity

Evaluation Methods for Learning Environments: A tutorial for AIED 200:

Shaaron Ainsworth

Go out and evaluate

Evaluation Methods for Learning Environments: A tutorial for AIED 2003.