
Prolog Practical 9: A Simple Version of STRIPS

AIPP 2004
Tim Smith

*Please use this exercise specification instead of that in the course notes.

First, read the beginning of chapter 16 in the course notes (‘Planning in Prolog’) before
attempting this exercise.

Introduction

Download the file simstrips.pl from the practical section of the course website:
http://www.inf.ed.ac.uk/teaching/courses/aipp/#Practicals_

This file contains a simple version of a STRIPS-type linear planner coded to solve the monkey
and bananas problem. This is the program discussed in the planning chapter of the course notes.

Have a look at the file and make sure you understand the structure of the program. Think back to
how the program is supposed to work (operators with preconditions, add and delete lists applied
to some world state); try and match this to the program. Run the program by calling the top level
goal: test(P).

The test/1 predicate has a subgoal solve/3:
1. The first argument of solve/3 represents the initial state of the world;
2. the second represents the goal state to be achieved;
3. and the third will become instantiated to the plan that, when applied to the initial

state, will achieve the goal state.

Making a Blocksworld Planner

You will now modify this planner to solve the Blocksworld problem depicted below:

Initial Stat
a b
Blue
Green
Red
e Goal Sta
a bc
Blue
Green
Red
te
c

http://www.inf.ed.ac.uk/teaching/courses/aipp/#Practicals_

The problem consists of:
• three locations: a, b, and c;
• three coloured blocks: red, green, and blue.

A plan needs to be devised that can move the blocks one at a time either on to the table or on to
another block so that the eventual configuration matches that of the Goal State. The Monkey and
Bananas planner can be modified to solve this Blocksworld problem.

Complete each section of this practical in order, writing the appropriate answers in the spaces
provided before adding the code to your program. Show your answers to the demonstrator once
you have a working planner.

1. Choose a representation for the blocksworld and use it to represent the initial state and
goal states as depicted. The closer you stick to the representation used in the Monkey and
Bananas problem the easier it will be to write the operators. Remember:

a. you only need to represent as much of the problem domain as is necessary to
solve the problem. Keep it simple;

b. your state representations shouldn’t include tests such as \+ X or X \= =Y) as they
are not called, they are only matched to other lists of states.

Initial State:
__
__
__
__

Goal State:
__
__
__
__

2. Compare the initial state and goal states. What operators do we need to move the blocks
so that their configuration matches the goal state? You should have as few operators as
possible. Unlike the blocksworld MEA planner presented in the lectures, your planner
cannot perform any ‘tests’ about world states (the can/1 predicate from lecture 16). All
properties necessary for an operator to be applied to the world must be represented in the
operators preconditions.

Write the new operators in the space below, listing their preconditions, delete lists, and
add lists.

[Operator] [Preconditions] [Delete list] [Add list]
__
__
__
__
__
__
__
__
__
__
__
__
__
__

3. Write your operators, initial state, and goal states into the program (replacing the original
M&B examples). Try running the planner. Does it generate a solution?

4. If it doesn’t generate a solution try adding “write(Op), nl,” in the second to last position
of the main solve/4 clause so that you can see the paths it is trying. What is it doing
wrong? Are the moves it is trying to perform valid?

5. If your operators and states are correct the problem should be caused by the way solve/4
chooses operators to implement. Because it can make no explicit tests of object properties
it has to rely on operator preconditions. There are two ways you could solve this problem
either add extra state descriptions in the preconditions or use one of the utility predicates
already provided to ensure that the operator preconditions can only match a state in the
world once. Perform both types of modification and write the extra bits of your code in
the spaces below:

Adding extra preconditions:
__
__
__
__

Using a predicate to check that preconditions only match a world state once (remember you can
use most predicates in multiple ways. For example, to strip lists apart, create new lists, or check
list contents) :
__
__
__
__

Now test both versions of your code to see if the planner now works.

	Prolog Practical 9: A Simple Version of STRIPS
	Introduction
	Making a Blocksworld Planner

