Artificial Intelligence Programming in Prolog

Tim Smith

September 26, 2004

School of Informatics,
University of Edinburgh.

Acknowledgements: This document was originally entitled An Introduction to Prolog by
Helen Pain and Robert Dale. Early versions were based on Prolog Step-by-Step by Graeme
Ritchie and Quick Prolog by Dave Robertson, Mandy Haggith, Louise Pryor & Geraint
Wiggins. The structure, content, and practical exercises in this version have received major
revision by Tim Smith.

Contents

1 Course Details

1.1 Schedule
1.2 Assessment Ll
1.3 Requirements L e
1.4 Materials
1.5 Software L
2 Introduction
2.1 How Do You Learn A Programming Language?
2.2 Thegistof Prolog L
3 Prolog Basics
3.1 Main conceptso e
3.2 An example Prolog program o oL
3.3 Facts, Questions and Variables
331 Facts L
3.3.2 Questions
3.3.3 Variables.
3.4 Prolog Terminology and Syntax
3.5 Expressing Relationships in Prolog
3.6 Unifying Terms e
3.7 Conjunctions Ll
3.7.1 Asking Questions that Contain Conjunctions
3.7.2 Using Variables in Conjunctions
3.8 Summary
3.9 Exercises
4 How Prolog Works
4.1 Introduction L
4.2 Running, Consulting and Editing Prolog Programs
4.2.1 Starting Prolog Lo
42.2 ConsultingaFile o oo

o o0 N ~ I

©

10

11
11
11
11
11
13
14
15
17
18
20
20
20
21
21

4.2.3 Seeing What’s in the Database

4.2.4 Getting Out of Prologo oo
4.2.5 Writing and Modifying Programs
5 Rules
5.1 Imtroductiono
5.2 Rules. . . . e
5.2.1 Expressing Rulesin Prolog
5.2.2 Returning to the 'Drinks’ Example
5.23 Recursion Lo
5.2.4 Getting multiple answerso
5.3 Summary e
5.4 EXErcises e
5.5 Practical 1. Lo
5.5.1 Getting Started
5.5.2 Running Prolog Lo
5.5.3 Gettingout of Prolog o oo
5.5.4 Editing the Program 0 L.
5.5.5 Testing the Program
5.5.6 More Thingsto Add o .
5.5.7 Harder Things oo

6 Backtracking

6.1
6.2
6.3
6.4

Getting more than one answero
Representing Prolog’s behaviour using trees
Summary . o.o. .. e

Exercises oL s

7 Built-in System Predicates

7.1
7.2
7.3
7.4

Introduction
The Example Program o0 L.
Asking the Database Some Questions
Using Rules o . e

28
28
28
28
30
32
34
36
36
38
38
38
41
41
42
42
43

45
45
46
90
52

7.5 Adding Built-in or System Predicates for User Interaction o6
7.6 Looking for Multiple Responses 58
7.7 Dealing with Arithmetic Operators 59
7.8 Summary e 63
7.9 Practical 2: Constructing Databases. 64
7.9.1 Part 1: Writing a Program to Find Who is Where 64
7.9.2 Complicating the Program, 65
7.9.3 Part 2: The Basic books Program 66
7.9.4 The books Program—Simple Interactive Version 68
7.9.5 Writing your own Database 68

8 Lists 71
8.1 Introduction L 71
8.2 The books3 Program 71
8.2.1 The Example Database 71
822 TheRules 71
823 Howlt Works 71
8.2.4 The member Predicate 74
8.2.5 The prlist Predicate 74

8.3 Lists e 74
8.3.1 Basics e 74

8.4 Manipulating Lists oo oo 75
8.4.1 Matching Lists oo L 76
8.4.2 Constructing and Destructing Lists 76

8.5 Summary e 78
8.6 Exercises e 78
9 Manipulating lists 81
9.1 Introduction L 81
9.2 The predicate member/2 81
9.2.1 Building the predicateo 81
9.2.2 Cleaning Up o e 82
9.2.3 Recursion in List Processing 0L 83

9.2.4 And/Or Trees for Recursive Predicates 83

9.3 Other List Processing Predicates 84
9.3.1 Printing a list of elementso 84

9.3.2 Checking that no element of a list of letters is a consonant 85

9.4 More List Processing Predicates 86
9.4.1 Finding the maximum of a list of numbers 86

9.4.2 Building new list structureso oL 87

9.5 EXercises 87
9.6 Practical 3: Basic List Processing 92
10 Further list processing predicates 95
10.1 Changing one sentence into another: the predicate alter/2. 95

10.2 Deleting the first occurrence of an element from a list: the predicate delete/2 98

10.3 Reversing a list: the predicates rev/2 and rev/3 99
10.4 Joining two lists together: the predicates append/3 100
10.5 Exercises 101
10.6 Practical 4: More list processing oL 106
10.6.1 Part 1: List and term processing 107

10.6.2 Part 2: The Sticks Problem 109

11 How Programs Work 112
11.1 Tracing o o o e e e e 112
11.2 The Byrd Box Model of Execution 112
11.3 Debugging using the Tracer 116
11.4 Loading Files 118
11.5 Some common mistakes L oo Lo 119
11.6 Summary oL e e e e e 120
12 AT Applications of Prolog: State-Space Search 121
12.1 The Missionaries and Cannibals Problem 121
12.2 Viewing the Problem as State Space Search 122
12.3 Practical 5: Missionaries and Cannibals in Prolog 122
12.3.1 A walk through the program 123

12.3.2 Problem Solution 124

12.3.3 Improving the search strategy 128

13 Parsing in Prolog 130
13.1 Introduction L 130
13.2 Simple English Syntax oo 130
13.3 The Parse Tree o e 131
13.4 Prolog Grammar Ruleso o 131
13.5 Using the Grammar Rules 134
13.6 How to Extract a Parse Tree 0. 134
13.7 Adding Arbitrary Prolog Goals 135
13.8 Practical 6: Definite Clause Grammars 136
13.8.1 Introduction Lo Lo 136

13.8.2 The Basic Grammar Lo 136

13.8.3 Structure Buildingo oo oo 138

13.8.4 Adding Number Agreement, 138

13.8.5 Extending the Coverage of the Grammar 139

13.8.6 Optional extension of DCG 140

14 Input/Output 141
14.1 Basic input/output facilitieso L 141
14.2 File input/output L L 144
14.3 Translating atoms and strings Lo 148
14.4 Practical 7: Input/Outputo 149
14.4.1 Introduction Lo Lo 149

14.4.2 Basic Terminal Input/Output 149

14.4.3 File Input/Output 151

15 Morphology: A List Processing Application 152
15.1 Summary L e e e e e e 156
15.2 Prolog Practical 8: Morphology 157
15.2.1 Introduction Lo Lo 157

15.2.2 Basic Operations on Atoms and Strings 157

15.2.3 Morphological Processing 158

15.2.4 Implementing Eliza in Prolog 160

16 Planning in Prolog: The Monkey and the Bananas 164
16.1 The Problem L 164
16.2 The General Approach to a Solution 164
16.3 Representational Considerations 164
16.4 Doing All Thisin Prolog 167
16.5 Prolog Practical 9: A Simple Version of STRIPS 170
16.5.1 Basicso 170

16.5.2 Making a Blocksworld Planner 170

17 Answers 173
17.1 Chapter 3 e e 173
17.2 Chapter 5 e e 176
17.3 Chapter 6 e 178
17.4 Chapter 8 L e 181
17.5 Chapter 9 e 182
17.6 Chapter 10 e e e 189

1 Course Detalils

1.1 Schedule

The Artifical Intelligence Programming in Prolog course consists of 19 one-hour lectures
(Monday and Thursday 4pm) beginning on Thursday 23rd September. All lectures will
be held in the A9/11, ground floor, Forrest Hill.

Students are required to attend one 2hr practical session per week (beginning in week 2).
Practical sessions will be held in Appleton Tower, level 5, Computer Lab West on
Wednesday’s 4-6pm and Friday’s 3-5pm. Practical exercises allow students to get
hands-on experience of the topics discussed in lectures and aquire the skills necessary for
completion of the assessed assignments. Each practical exercise will contain sections that
need to be shown to the practical demonstrator and logged as complete. These exercises are
not formally assessed or kept on file but their completion is compulsory.

1.2 Assessment

This course will be examined during the summer term exam period. The examination counts
for 70% of the course mark. The other 30% is split between two assignments.

e Assignment 1: An automatic puzzle solver. This assignment is worth 107% of the
course mark. It will be handed out at the end of week 2 and is due in Monday 1st
November at 4pm.

e Assignment 2: Six Degrees of Kevin Bacon. This assignment if worth 20% of
the course mark. It will be made available during week 6 and is due in Friday 3rd
December at 5pm.

Both assignments will be submitted electronically using the submit command on DICE.
Details of how to use this will be provided with each assignment. Penalties will be awarded
for late submissions and extensions will only be given in extreme circumstances.

1.3 Requirements

All students who choose to take AIPP for credit must have previous programming experience.
Students who have not previously learnt a programming language or who don’t know Java
specifically are advised to take Introduction to Java Programming (IJP). Students may also
opt to take both and this will be accomodated by the lecturers. Any student who questions
whether their level of ability is sufficent for AIPP should speak to me in person or contact
me by e-mail (tim.smith@ed.ac.uk).

If students have previously studied Prolog or used it in industry then they can be made
exempt from taking AIPP. Students should discuss their case for exemption with myself.

1.4 Materials

All course material including lecture notes, practicals, assignments, and important informa-
tion will be available on the course website.

http://www.informatics.ed.ac.uk/teaching/courses/aipp/)

Practical exercises are also included in this document after the corresponding chapters.

This document constitutes the main reference for the AIPP course. All information within
this document is examinable unless otherwise indicated. However, the concepts within this
document will be explored and extended in the lectures which makes attendance to lectures
compulsary if you are to learn the appropriate material.

There is no required text book but there are three which I can recommend:

[Clocksin & Mellish 03] A good basic introductory text. This is the most up to date
text book and conforms to the new ISO standard Prolog. This is the form of Prolog
that will be taught in AIPP. If you choose to use a text book other than Clocksin and
Mellish refer to the course notes for correct syntax.

[Bratko 01] An introductory book that leans heavily towards Al applications. It is more
chatty than Clocksin and Mellish, but has the major disadvantage of frequently using
a poor programming style. A major source of example Al programs.

[Sterling & Shapiro 94| Possibly the best general Prolog book around, but definitely not
an introduction, especially if you don’t have much programming experience.

1.5 Software

There are many different implementations of Prolog available, each slightly different. Fortu-
nately there is a language core that is provided by most implementations (implementations
you may come across include Quintus, SICstus, Arity, LPA MacProlog and NIP, among oth-
ers). The standard implementation for this module is SICStus Prolog 3, which is available
on departmental machines by typing sicstus.

A free version of Sicstus Prolog for Windows is available for all Informatics students. Fill in
the Informatics Support form to request a copy.

http://www.inf.ed.ac.uk/cgi-bin/support.cgi

You are free to work on assignments on a Windows PC but all submitted code should work
on the DICE installation of Sicstus. Therefore, please test all code on the DICE system
before submission.

2 Introduction

2.1 How Do You Learn A Programming Language?

Artificial Intelligence is a rapidly changing field. It is constantly borrowing from the latest
technologies and being applied to new areas. As a result of this it is impossible to predict
what language you may ultimately end up writing Al programs in — new ones will certainly
come along and old ones will change. Even the major high level languages used in Al (Prolog
and Lisp) are being continually upgraded and released in slightly different versions, for
different machines and computer architectures. For example, whereas Prolog was designed
years ago in Edinburgh! to run on DEC-10 mainframe computers, you can now get versions
of Prolog which run on a small PC or Macintosh and other versions which run on giant,
massively parallel architectures.

As a result of this, the most important skill for Al programmers is not knowledge of a
particular language, but the ability to learn new programming languages quickly, effectively
and quite possibly often! This is not an innate talent; it is a skill that can be learned. Useful
approaches include the following:

o Getting the gist of a language before you begin. Some of the questions you might want
to ask, together with possible answers, are:

What sort of language is this? A logic programming language, an imperative lan-
guage, an object oriented language, a high-level language, a low-level language,
compiled, interpreted;

What sorts of things can it do for me? Pattern matching, searching, efficient data
structures, good interface tools etc.;

What is the main control mechanism?

What is the syntax of this language?

How are variables handled?

How do I write comments?

e Using reference manuals efficiently, by guessing keywords, reading only a brief overview
then using the index, skimming to get ideas;

e Finding out about debugging tools early on, before you write that huge bug-ridden
program;

e Starting with small programs, or bits of programs, and getting them working before
you move on. Not only does this make you feel satisfied, and reminds you that you
have learnt something already, but it is also sound methodology. A big program that
is a collection of small working programs is much more likely to work than a huge
program which has evolved in a permanently buggy form;

e Thinking of simple solutions to problems, or simplifications of existing solutions. There
is absolutely no merit in a complicated or long program where a shorter or simpler one
will suffice;

In fact it was conceived in Marseilles, though not as a general purpose programming language

e Talking to people who know the language. People respect honest ignorance and are
usually flattered by being asked advice (within reason!);

e Looking at “good” programs and trying to see what is elegant about them: an aesthetic
sense for the language often corresponds well with either reliability, efficiency or both;

e Always laying out your own programs in as clear a manner as possible, taking pride in
your work, and annotating them with comments;

e Learning a little and often and in varied ways. If your program doesn’t work, write
down the problem and then leave it alone till tomorrow, think about the program away
from the computer, leaf through the most appropriate chapter in the reference book,
think about how you wished it worked, make sure you know as much as you could
about the debugger ...only then return to your program;

e Practising and being honest about your abilities. Don’t expect to be able to get an
entire language sussed in one day; practice a little and often and try to learn from
your mistakes; give yourself a mental pat on the back when you get things right and
your program works; keep a positive but not unrealistic attitude to your current level
of ability.

e Finally, and most importantly, by trying to get the feel of the language, in a very
informal sense, at a very high level. This is important as you proceed to become more
familiar with the detail of the language — it gives you a framework from which to hang
things.

2.2 The gist of Prolog
Some facts about Prolog:

e Prolog is a high-level logic programming language (PROgramation et LOGique);

e You interact with the Prolog system directly by typing commands directly into the
terminal;

e Good at pattern matching (by unification) and searching;
e Not very good for repetitive number crunching;

e Excellent for language processing, rule-based expert systems, planning and other Al
applications;

e Uses depth-first search and backtracking to search for solutions automatically;
e Best written in little chunks (modular code): indeed this is assumed in its syntax;

e Uses a % to prefix comments or /* ... */ to surround them.
The three most important concepts in Prolog are unification, backtracking and recursion.

If you understand these concepts thoroughly you can probably write pretty good Prolog
programs.

10

3 Prolog Basics

3.1 Main concepts
Some of the main Prolog concepts that you will be introduced to are:

e facts;

e questions;

e logical variables;

e matching (or ‘unification’);
e conjunctions; and

e rules.

Each of these is described in more detail below.

3.2 An example Prolog program

Figure 1 shows an example of a Prolog program, along with some of the dialogue that might
take place between the user and the Prolog interpreter.

K=

This is the Prolog prompt which informs the user that the program expects some input (it
isn’t currently processing anything). The rest of the file is made up of Facts and Comments.
Facts are always followed by a full stop. A line of comments has to be preceded by ‘%’.
Several lines can be commented out of your program (so that the compiler ignores them)
by preceding the section with ’/*’ and ending it with "*/’. The ’yes’ and 'no’ statements
are made by the Prolog interpreter in response to user queries (the mechanics of this will be
explained more later).

3.3 Facts, Questions and Variables
3.3.1 Facts
A fact asserts some property of an object, or states some relation between two (or more)

objects; it states that something is known to be true.

A fact is made up of a predicate (which states the relation or property) and a number of
arguments (which are the objects): see Figure 2.

A fact can contain any number of arguments; so, for example:
drinks(alan,beer,export,lorimers). has four arguments
likes(alan,coffee). has two arguments

listing. has no arguments

11

7- listing.
hates(heather, whisky).
likes(alan, coffee).
likes(alan, whisky).
likes(heather, gin).

likes(heather, coffee).

drinks(alan, beer).
drinks(heather, lager).

yes
?- likes(alan, coffee).

yes

?7- drinks(heather, lager).

yes
?- drinks(alan, lager).

no

% lists the program

% heather hates whisky

% alan likes coffee
% alan likes whisky
% heather likes gin
% heather likes coffee

% alan drinks beer
% heather drinks lager

% is

% it
% is
% it
% is

it true

true
true

is
it
true
true

is
it

is

that alan likes coffee?

that alan likes coffee
that heather drinks lager?

that heather drinks lager
that alan drinks lager?

not true that alan drinks lager

Figure 1: An interaction with the Prolog interpreter

drinks (alan, beer).

[N

arguments

predicate

Figure 2: The structure of a fact

12

We refer to the number of arguments in a fact as its arity which we write in the form
drinks/2 . This tells us that the fact ’drinks’ takes two arguments or, in other words, an
arity of two.

A Prolog program may have any number of facts. When a program is given to the Prolog
interpreter (loaded into Prolog, or consulted), the set of facts that are part of the program
represent all that is known to be true. They are really a set of logical assertions. Together
they are often referred to as the database. They have no real ‘meaning’, however: the
person writing the program defines their own interpretation of what they mean. Whilst it
might seem silly to interpret

drinks(alan,beer)

as drinks alan beer, there is nothing to stop us using this interpretation— it’s all the same
to Prolog. What is important is to be consistent, so we have to keep arguments that are
meant to refer to the same objects in the same argument slots.

The best way to be consistent and make your code readable is to think of your code as a
Subject Verb Object construction in English. The predicate should always be the verb
as it can then be applied to many subjects and objects. The Subject should always be the
first argument and the Object the second argument. If you stick to this format then your
code will be easily readable by others.

3.3.2 Questions
If a question is asked by the user, the Prolog interpreter looks at the database of facts? that

it has to see if there is enough information to answer it. Given the example program we saw
in Figure 1, we might ask questions like the following:

e What does Heather drink?
e Does Alan like coffee?

e Who drinks whisky?

The Prolog interpreter doesn’t understand English, however, so we have to re-express these
questions in Prolog itself. Taking the second of these questions as an example, we ask:

?- likes(alan, coffee).
and the Prolog interpreter replies:
yes

The Prolog interpreter matches the question to each fact (or assertion) in the database, as
follows:

2The database can also contain rules, as we will see later.

13

1. First, Prolog finds a fact that matches the predicate in the question.
2. If this match succeeds, Prolog then matches the first argument to the predicate.

3. If this match succeeds, Prolog matches the second argument, and so on for the rest of
the arguments.

4. If the match fails at any point, Prolog looks for the next assertion that the predicate
matches and tries again to match the arguments.

5. If the predicate and all the arguments are successfully matched, the process stops and
the interpreter prints yes, meaning ‘there is a match—1I can show this to be true’. The
goal of finding a match has been satisfied.

6. If there is no match at all then no is printed, meaning ‘there is no match’: the goal of
finding a match cannot be satisfied.

3.3.3 Variables

Suppose the question we want to ask is What does Heather like?; some way has to be found
of asking the ‘what’. The goal is to find some ‘what’ such that Heather likes it; anything
that satisfies the question will do. In Prolog the question becomes:

?- likes(heather,What).

Note that the ‘What’ begins with a capital letter. This is to indicate that it is a variable.
A variable is a placeholder that can take on any value through instantiation. It performs a
similar function to the word thing in English, or z in algebra.

You will all be familiar with the concept of variables from other programming languages
but in Prolog variables are a lot more flexible. You do not have to declare variable types,
initialise them, or define their scope (e.g. local vs. global). To create a variable in Prolog
all you have to do is write a string which begins with a capital letter. Because of
this simplicity you have to ensure that all other elements of your code start with lower case
letters otherwise you will create unintended variables.

The other arguments encountered until now represent particular people or specific objects:

alan
heather
whisky
gin
coffee
lager
beer

These do not change: they always represent the same object, and so are called constants.

Both variables and constants are examples of structures called atoms. They cannot be
broken down into smaller objects that mean anything to Prolog.

14

When a match succeeds, any variables are given the value of any constant they are matched
to. This matching process is one of the very powerful facilities that comes free with Prolog;
the Prolog interpreter does this matching automatically and remembers what is matched to
what.

When a variable has no value, we refer to it as an uninstantiated variable. When an
uninstantiated variable is returned to the user it is represented as an underscore (’_’) followed
by a number randomly allocated to it by the prolog interpreter (e.g. ’_45’). When it gets
given a value by the matching process, it is referred to as an instantiated variable.

So, if we match
?- likes(heather, What).

to
likes(heather, gin).

then we say that What has become instantiated to gin. The Prolog interpreter prints out
the values of any variables that have become instantiated in the process of matching:

What = gin

Note that the same variable can appear in different questions and provide different answers.
This is because the variable names only apply to each question: this is referred to as the
scope of the variable. In Prolog, the scope of the variables is said to be local, that is, they
only have the same value in a limited (local) environment. All the variables in the same
question with the same name become instantiated at the same time to the same value. Any
instance of the variable in different questions/parts of the prolog program are independent
and do not become instantiated. Don’t worry if this seems strange to begin with; like a lot
of Prolog, it takes some time to get used to.

3.4 Prolog Terminology and Syntax

Prolog programs consist of propositional statements. These statements are based on Horn
Clauses or clauses for short. Horn Clauses are a form of logical representation that denotes
an implication between two or more positive facts and a single positive facts.

(parent(X, Z) A ancestor(Z,Y)) D ancestor(X,Y)

In Prolog the range of relationships that can be represented is expanded. This permits three
types of clauses:

e facts declare things that are always true.

e rules declare things that are true depending on a given condition.

15

e questions test if a particular goal is true.

These clauses are all constructed using other elements that can be referred to using a hier-
archy of terminology.

"Term’ is used to refer to any data object in Prolog.

e 3 constant is a term
e 3 variable is a term

e a compound term is a term (e.g. a fact)
Constants can be:

e atoms
e integers

e real numbers
Atoms are made up of:

letters

digits

the underscore

SymbOlS (+7 _, *, /, \7 A, <, >7 =; ”7 :) " ?7 ©7 #7 $’ &)

A quoted string is also an atom.

Constants are used to refer to objects. Constants begin with lower case letters. Note that
all predicate names are constants—don’t use a variable for a predicate:

X(jane, jim).

Certain conventions are used when writing Prolog—in other words, Prolog, like other lan-
guages, has a syntax:

e All predicates start with a lower case letter.

e All variables begin with an upper case letter.3

e The format of each fact or assertion is:

— a predicate followed by any number of arguments;

— the arguments are separated by commas and enclosed by round brackets;

3Later, you will discover other ways of writing variables.

16

predicate(argl, Secondarg, anotherarg).

relationship \rabe full stop

constants

Figure 3: The elements of a fact

— there is no space between the predicate and the opening bracket; and

— a full stop follows the enclosing round bracket.

This is shown diagrammatically in Figure 3.
e The predicate can be a string like son_of, drinks, likes, and so on.

e The arguments can be constants, variables, or even other assertions.

The Prolog interpreter prints the characters ‘| ?-’ to indicate that it is waiting for the user
to ask a question or to set a goal to be solved; we refer to these characters as the Prolog
prompt.

3.5 Expressing Relationships in Prolog

Suppose I want to say:
the capital of paris is France

In Prolog we might write this as:
has_capital(france, paris).

where we are expressing a relationship has_capital between 2 arguments, france and
paris. Note that the full stop is used to terminate the clause, and that objects are referred
to with words beginning with lower case letters. We can express a relationship with more
than two things:

ate(robert, curry, breakfast).

Or one argument relations (usually called predicates):

17

ate_curry_for_breakfast (robert) .
robert_ate_for_breakfast (curry) .
robert_ate_curry(breakfast) .

Or 0-argument relations:
robert_ate_curry_for_breakfast.

It is all a matter of how you choose to represent the relationships, which will depend on
what you want to do with them. For example, as the predicate becomes more specific the
number of instances the predicate can be applied becomes less and more rules will have to
be written to accomodate all the exceptions. This leads to a long and repetitive program.

3.6 Unifying Terms

The process of matching is also referred to as unification. When two terms match we say
that they unify. It is by the process of matching or unification that variables get instantiated.
Unification is a two-way matching process. It operates on any pair of Prolog terms. For
example, unifying loves(john, X) and loves(Y, mary) results in loves(john, mary).
There is a predicate defined for us in Prolog that allows us to test whether or not two things
unify. Because it is provided by the system it is known as a system predicate. It is the
infix predicate =/2. Note that infix means that it is placed between the two things that are
being unified, and the /2 is known as the arity of the predicate, and indicates how many
arguments the predicate has. So, the predicate =/2 takes two arguments and tries to unify
them.

For example, we can unify the following sets of terms, resulting in the outcomes shown.
Some comments are given in () after each match.

Pairs of terms Outcome

la. ?7- fred=X. X=fred yes
(the variable X unifies with the constant fred)

1b. ?7- c=letter(c). no
(a constant cannot unify with a one argument predicate)

1ic. 7- f(tee)=£(9). S=tee yes
(the predicate names are the same; the variable S unifies with
the constant tee)

1d. ?7- father(john,tom)=father(tom,Who) . no
(the constants john and tom cannot unify)

le. ?- centre(a,X,c)=centre(Y,b,c). Y=a X=b yes
(the constant a unifies with variable Y, constant b with X)

18

1f. ?7- colour(N,N)=colour(green,X). N=green X=green yes
(variable N unifies with constant green; variables N and X
match, so X becomes instantiated to green also. A

variable will always unify with another variable. We refer to them then

as shared variables. If one then unifies with a constant or term, the

other shares that value also.).

1g. ?- first(sue,dave,bob)=first(N,dave,N). no
(variable N unifies with constant sue, but it then will not
match in the 3rd argument with another constant bob)

ih. ?7- drink(beer(lorimers,eighty) ,Pub)=drink(What,mathers) .
What=beer (lorimers,eighty) Pub=mathers
(the first argument here is a term, which will unify with the
variable What)

1i. ?7- havecar (metro)=havecar(Yes) . Yes=metro
(variable Yes and constant metro unify)

1j. ?- £(X,Y,z)=f(z,a,Z). X=z Y=a Z=z yes
(X unifies with z in the first argument; Y with a in the 2nd and
Z with z in the 3rd.)

If you wanted to check if two terms don’t unify then you need to negate the unification
operator. Negation of any term can be achieved by prefixing it with the built-in operator

\+.

?7- \+fred=X.

no.

?7- \+fred=sue.

yes.

?7- \+first(sue,dave,bob)=first(N,dave,N).
true?

yes.

Notice that the value of the variables don’t change if the terms are found to not unify.
Can you think how this feature could be used to test whether two terms unify without
instantiating any of the variables being tested?

There is also a not-equal-to operator \==/2 which is placed between two terms just like the
equal-to operator =/2. This functions slightly differently and so its discussion will be saved
for the later section on Arithmetic Operators.

19

3.7 Conjunctions
3.7.1 Asking Questions that Contain Conjunctions

Earlier we saw how to ask Prolog simple questions. Suppose we wanted to ask more complex
questions like the following:

Is it true that both Alan and Heather like coffee?
Is there anything that Heather hates but Alan likes?

To answer these questions, we have to break them down into simpler questions, and ask each
of them, one after the other. In Prolog we do this as follows:

| 7= (questionl), (question2).

So, for example, we might write:

| ?- likes(heather, coffee), likes(alan, coffee).

yes
| ?- likes(heather, gin), likes(alan, whisky).

yes
| ?- likes(alan, beer), likes(heather, beer).

no

Prolog takes each subgoal in the query (one at a time, going from left to right) and an
attempt is made to satisfy it. As each subgoal succeeds, the next is tried. If all the subgoals
succeed, then the question as a whole succeeds. If at any point one of the subgoals fails,
then the whole question fails.

The comma in the query here is read as and, and is referred to as the conjunction (the
subgoals being conjoined subgoals). So, if we want to show that two assertions are both
true then we first have to show that they are each true in isolation. In logic, this is equivalent
to saying that:

A and B is true if A is true and B is true.

3.7.2 Using Variables in Conjunctions

As with simpler questions, variables can appear in conjunctions too. However, if a variable
appears more than once in a series of conjoined goals it will always match to the same value:
i.e., if the variable What is instantiated to beer in one subgoal it will also be instantiated to
beer in all other subgoals in the same question.

20

| ?- likes(heather, What), likes(alan, What).

X = coffee 7

yes
| ?- likes(alan, Something), hates(heather, Something).

Something = whisky 7
yes

Variables with different names may or may not share the same instantiations, depending on
what they match to:

| ?- drinks(alan, X), likes(heather, S).

beer
gin 7

X
S
yes

| ?7- drinks(X, Y), hates(X, Y).

no

Note that a query can contain any number of conjoined goals.*

3.8 Summary

The basic mode of operation of Prolog is thus as follows.

1. We provide Prolog with a question.
2. Prolog matches the question with assertions in a database,

e looking for exact matches of predicates and constants; and

e looking for variables to match to anything (including other variables).

In the next sections, we look at how Prolog works, then go on to introduce the notions of

rules and backtracking.

3.9 Exercises

These exercises are provided to assist your learning of the concepts discussed in this chapter.
They are not assessed but undertaking them is encouraged. Answers to all exercises are

given in the final chapter of these notes.

4This is why when you forget the full stop and go on to the next line it doesn’t matter: you might have
wanted to have a lot of subgoals that would not all fit on one line.

21

Question 3.1 The predicate =/2 takes 2 arguments and tries to unify them. For each of
the following:

e specify whether the query submitted to Prolog succeeds or fails;

e if it succeeds, specify what is assigned to any variables.

3.1a ?7- Pear = apple.

3.1b ?- car = beetle.

3.1c ?7- likes(beer (murphys),john) = likes(Who,What).
3.1d ?7- £(1) = F.

3.1e ?- name(Family) = smith.

3.1f ?7- times(2,2) = Four.

3.1g ?7- 5%3 = 15.

3.1h 7- £(X,Y) = £(P,P).

3.1i ?- a(X,y) = a(y,2).

3.1j 7- a(X,y) = a(z,X).

Question 3.2 The following Prolog program is consulted by the Prolog interpreter.

vertical(seg(point (X,Y),point(X,Y1))).
horizontal (seg(point(X,Y),point(X1,Y))).

What will be the outcome of each of the following queries?

3.2a 7- vertical(seg(point(1,1),point(1,2))).

3.2b 7- vertical(seg(point(1,1),point(2,Y))).

22

3.2¢ ?7- horizontal(seg(point(1,1),point(2,Y))).

3.2d 7- vertical(seg(point(2,3),P)).

3.2 ?- vertical(S), horizontal(S).

Question 3.3 The following Prolog program is consulted by the Prolog interpreter.

parent (pat,jim) .
parent (pam,bob) .
parent (bob,ann) .
parent (bob,pat) .
parent (tom,1iz) .
parent (tom,bob) .

What will be the outcome of each of the following queries?

3.3a ?

parent (bob,pat) .

3.3b ?

parent(liz,pat).

3.3c ?

parent (tom,ben) .

3.3d ?

parent (Pam,Liz).

3.3e ?

parent (P,C) ,parent (P,C2) .

Question 3.4 The following Prolog program is consulted by the Prolog interpreter.

colour(bl,red).
colour(b2,blue).
colour(b3,yellow) .
shape(bl,square) .
shape(b2,circle).
shape (b3, square) .
size(bl,small).
size(b2,small).
size(b3,large) .

What will be the outcome of each of the following queries?

3.4a ?7- shape (b3,8).

3.4b ?- size(W,small).

23

3.4c ?- colour(R,blue).

3.44 ?- shape(Y,square),colour(Y,blue).

3.4e 7- size(X,large),colour(X,yellow).

3.4f ?- shape(BlockA,square) ,shape (BlockB,square) .

3.4g ?7- size(b2,S),shape(b2,S).

3.4h ?- colour(bl,Shape),size(X,small),shape(Y,circle).

Question 3.5 The following Prolog program is consulted by the Prolog interpreter.

film(res_dogs,dir(tarantino) ,stars(keitel,roth),1992).
film(sleepless,dir(ephron),stars(ryan,hanks),1993).
film(bambi,dir(disney) ,stars(bambi,thumper) ,1942).
film(jur_park,dir(spielberg) ,stars(neill,dern),1993).

What will be the outcome of each of the following queries?

3.5a ?7- film(res_dogs,D,S5,1992).
3.5b ?- £film(F,dir(D),stars(Who,hanks),Y).
3.5¢c ?7- film(What,Who,stars(thumper) ,1942).

3.5d Write the query that would answer the question:
"Who directed Jurassic Park (jur_park)?”

and give the outcome of the query.

3.5e Write the query that would answer the question:
”What film did hanks appear in in 1993 and who was the other star?”

and give the outcome of the query.

24

4 How Prolog Works

4.1 Introduction

This section deals with the basics of running Prolog programs.

4.2 Running, Consulting and Editing Prolog Programs
4.2.1 Starting Prolog

Giving the command sicstus on DICE will get you into Prolog:
snoopy[18] : sicstus
You’'ll see something like this:

SICStus 3.10.1 (x86-linux-glibc2.2): Fri Apr 11 19:15:45 CEST 2003

Licensed to dai.ed.ac.uk
| 7-

This tells you that the dialect of Prolog that you are using is SICStus Prolog.

4.2.2 Consulting a File

When you get the | ?- prompt, type in the name of the file you want to load into the Prolog
database (i.e., the file to be consulted):

| ?- consult(family).
% consulting c:/program files/sicstus prolog 3.10.1/bin/demo/family.pl...
% consulted c:/program files/sicstus prolog 3.10.1/bin/demo/family.pl in module user,

yes
| 7-

or use the following abbreviated form instead (but don’t do both):
| 7- [family].

Both forms can be used to access files in other folders than the one in which you loaded
Sicstus by replacing the filename with ’foldername/filename’.

You will now have the contents of the file family in Prolog’s database where it can be
instantly accessed by the interpreter. Subsequent Prolog files can be added to the database
by consulting them in the same way and they will not overwrite the existing data unless the
new predicates exactly match those previously defined.

25

4.2.3 Seeing What’s in the Database

You can see what facts and rules (i.e., what clauses) Prolog knows about at any point by
listing the contents of the prolog database:

| ?- listing.

Instead of listing the whole program, you can just list parts of it by using the predicate
listing and the name of the predicate to be listed:

| ?- listing(parent).

parent (A, B) :-
father(A, B).

parent (A, B) :-
mother (A, B).

yes

4.2.4 Getting Out of Prolog

Type halt to get out of Prolog:

| ?- halt.

snoopy[19] :

Sicstus can also exited by pressing Ctrl+C followed by e at any point. Run away processes
can be aborted without loosing the contents of the Prolog database by pressing Ctrl+C
followed by a.

4.2.5 Writing and Modifying Programs

We can write new programs or alter existing ones using the editor emacs. We can add some
new clauses to the file family; then if we go back into Prolog, and consult this file, the new
clauses will be known by the Prolog interpreter.

In general, when writing prolog programs or altering existing ones, you should do the fol-

lowing:

e Write the clauses out on paper first.

Get into the editor.

Add to or change the text of the program.

Go into Prolog.

Consult the file containing the program.

26

e List the contents of the database.

Test the program.

e Work out any changes you need to make.

Exit Prolog and start again.

Although it may seem a waste of time to work out the clauses on paper first, if you don’t
do this you may degenerate into hacking away at the program without having a clear idea
of what is really going on.

27

5 Rules

5.1 Introduction
In previous sections, we looked at a simple Prolog program, and introduced facts (or as-

sertions), questions, variables, syntax and conjunctions. In this section, we go on to
discuss rules.

5.2 Rules
5.2.1 Expressing Rules in Prolog

As we saw earlier, from the information that the Prolog interpreter has it can answer the
question:

| ?- drinks(alan, beer).

yes

If you had the same information—that is, that Alan drinks beer—and were asked the question
Does Alan like beer?, you would probably answer Yes. Knowing that Alan drinks beer allows
you to infer that Alan likes beer (on the grounds that people don’t usually drink things that
they don’t like). To see whether or not the Prolog interpreter is able to make the same
inference—i.e., to see if it is able to reason that If Alan drinks beer, then he must like it—the
question we must ask is:

| ?- likes(alan, beer).
The Prolog interpreter would reply:
no

meaning ‘I cannot prove that Alan likes beer’. To allow Prolog to make the same inferences as
we do, we have to provide the information about the relationship between liking and drinking
explicitly; i.e., we have to find some way of encoding the rule that would be expressed in
English as

If someone drinks beer then we can infer that that person likes beer.
or
We can say that someone likes beer if we know can prove that they drink it.

In Prolog this becomes:

28

likes(Person, beer):- % a Person likes beer if ...
drinks (Person, beer). % ... that Person drinks beer

Some things to note here:
e The first predicate-argument structure here is what you are trying to show to be true
(to prove), in the same way as you would try to satisfy any other assertion.
e The ‘:-’ is read as if.
e Whatever comes after the if and before the full stop is what has to be satisfied for the

whole rule to succeed.

In the present example, there is one subgoal to satisfy. So, to satisfy the goal 1ikes (Person, beer),
the subgoal drinks (Person, beer) must be satified.

The whole structure is generally referred to as a rule. A rule is one type of clause, just as a
fact or assertion is also a clause; in particular, a rule is a clause with a head (the left-hand
side of the ‘:-’) and a body (everything to the right-hand side). There can be any number
of subgoals in the body of the clause.

A fact or assertion is a clause with no body.

Restrictions on the form of a rule:

e Only one goal may appear in the head.

e Any number of goals may appear in the body, separated by commas.
So, we can’t have:

happy(fred), powerful(fred):-
rich(fred) .

We can have more than one goal in the body of a rule:
A man is happy if he is rich and famous.
can be expressed in Prolog as:

happy(Person) : -
man (Person),
rich(Person),
famous (Person) .

Here we have three conjoined subgoals.

To express:

29

Someone is happy if they are healthy, wealthy or wise.
in Prolog, we first rewrite it as

Someone is happy if they are healthy or
Someone is happy if they are wealthy or
Someone is happy if they are wise.

Then:

happy(Person) : -
healthy(Person) .
happy(Person) : -
wealthy(Person) .
happy (Person) : -
wise (Person) .

So the query ”is someone happy” translates as ?7- happy(Someone). and will succeed if
any of the thrre rules succeed i.e. if either healthy(Someone) . or wealthy(Someone) . or
wise((Someone) . can be proved. We may want to be more specific:

A woman is happy if she is healthy, wealthy or wise.

In Prolog this becomes:

happy(Person) : -

healthy(Person), woman(Person).
happy (Person) : -

wealthy(Person), woman(Person).
happy (Person) : -

wise(Person), woman(Person).

Here we have to check in every rules that Someone is a woman. We could have avoided this
by using another rule in additional to the one above:

happy_woman(P) : -
woman (P) ,happy (P) .

5.2.2 Returning to the ’Drinks’ Example

If you want to write some conjunction of goals and use it generally (that is, you want to be
able to vary what the variables match to), then it would be more convenient to write a rule
for it (with all the conjoined subgoals as its body) than to keep rewriting all the conjoined
goals separately each time.

If, for example, you wanted to know about the drinks that two people both like, we could
write a rule bothlike (Person, Other, Drink) that is satisfied if both Person and Other
like the same Drink:

30

bothlike(Person , Other, Drink):- % Person and Other bothlike Drink if
likes(Person, Drink), % .. Person likes Drink and
likes(Other, Drink). % .. Other likes Drink

We would have to add this to the file in which we keep the rest of the clauses about what
people like and drink. We would use an editor to do this, and then go back into Prolog and
consult the amended file. The following goal (or query) could then be tried:

| ?- bothlike(alan, heather, S).

This would match to the head of the rule, with Person instantiated to alan (we will write
this as alan/Person), heather/Other and S/Drink.° The first subgoal to satisfy will then
be:

likes(alan, Drink)
which will match with S/coffee. The next subgoal to satisfy is then
likes(heather, coffee)

which succeeds. There are no more subgoals, so bothlike(alan, heather, S) succeeds
with S instantiated to coffee.

| ?- bothlike(alan, heather, S).

S = coffee 7

You may also have noticed that, by this rule, if we asked what two people both like coffee
we would also find out that both Alan and Alan like coffee! Whilst this may seem silly (it
is not quite what we intended), it is perfectly sensible logically.

| ?- bothlike(A, B, coffee).

A = alan
B = alan 7
yes

If we want to also say that we don’t want to have both people being the same person, then
we have to explicitly state that they are not the same person. This means that we have to say
that the variables that match to the first two arguments of bothlike (Person, Other, Drink)
must not be instantiated to the same value; in other words, Person must not be the same
as Other. We add a subgoal to the rule in order to say this:

5Note that neither X nor S have a value at this point, but that they will share the same value as soon as
one or the other of them becomes instantiated by matching.

31

bothlike(Person , Other, Drink):- % Person and Other bothlike Drink if

likes(Person, Drink), % .. Person likes Drink and
likes(0Other, Drink). % .. Other likes Drink and
Per\==0ther. % .. Person and Other are not the same

For the remainder of this section, however, we will leave this clause with the possibility of
Person and Other being the same.

5.2.3 Recursion

Suppose we decide that, given two people A and B, A likes B if A and B both like the same
drink. So we are saying:

some person likes some other person if
the first person likes some drink and
the other person likes the same drink.

We can express this in Prolog as follows:

likes(Person, Other):- % Person likes Other if ..
likes(Person, Drink), % .. Person likes Drink and
likes(Other, Drink). % .. Other likes Drink.

This program is recursive, that is, it calls itself. Some recursive statements:

e An ancestor is a parent or a parent’s ancestor.

e A string of characters is a single character or a single character followed by a string of
characters.

An example recursive program:

talks_about(A,B) :—
knows (A,B) .

talks_about (P,R) :—
knows (P,Q) ,
talks_about(Q,R) .

In English:

You talk about someone if you know them or you know someone who talks about
them.

Given the database:

32

talks_about (A,B) : -
knows (A,B) .

talks_about (P,R) : -
knows (P, Q) ,
talks_about(Q,R) .

knows (bill, jane) .

knows (jane,pat) .

knows (jane,fred) .

knows (fred,bill).

and the goal:
| ?- talks_about(X,Y).

what do we get? Try this for yourself and see.

Another example: Given the database:

(BN

has_flu(X):- infected(X).
has_flu(X) :- kisses(X,Y), has_flu(Y).

N

infected(john) .

kisses(sue, john).
kisses(john,ann).
kisses(sally,ann).
kisses(fred,sue).

~N O O W

the outcome of each of the following queries is given, together with some explanation. Note
that the above predicates are numbered for ease of reference.

a. ?7- has_flu(john). yes

(rule 1:has_flu(john) :-infected(john).
subgoal infected(john) matches 3.
all subgoals succeed, rule 1 succeeds)

b. ?7- has_flu(sue). yes

(rule 1:has_flu(sue):-infected(sue).
fails.
rule 2: has_flu(sue) :- kisses(sue,Y) ,has_flu(Y).
subgoal kisses(sue,Y) matches 4, Y=john
subgoal has_flu(john)
rule 1:has_flu(john):-infected(john).
subgoal infected(john) matches 3.
all subgoals succeed, rule 1 succeeds
all subgoals succeed, rule 2 succeeds)

33

c. ?- has_flu(sally). no

(rule 1:has_flu(sally):-infected(sally).
fails.
rule 2: has_flu(sally):- kisses(sally,Y),has_flu(Y).
subgoal kisses(sally,Y) matches 6, Y=ann
subgoal has_flu(ann)
rule 1:has_flu(ann):-infected(ann).
fails
rule 2:has_flu(ann):-kisses(ann,Y2) ,has_flu(Y2).
subgoal kisses(ann,Y2)
fails)

d. ?7- has_flu(fred). yes

(rule 1:has_flu(fred):-infected(fred).
fails.
rule 2: has_flu(fred):- kisses(fred,Y),has_flu(Y).
subgoal kisses(fred,Y) matches 7, Y=sue
subgoal has_flu(sue)
rule 1:has_flu(sue):-infected(sue).
fails.
rule 2: has_flu(sue):- kisses(sue,Y1l) ,has_flu(Y1).
subgoal kisses(sue,Y1) matches 4, Yi=john
subgoal has_flu(john)
rule 1:has_flu(john):-infected(john).
subgoal infected(john) matches 3.
all subgoals succeed, rule 1 succeeds
all subgoals succeed, rule 2 succeeds
all subgoals succeed, rule 2 succeeds)

5.2.4 Getting multiple answers
Returning to our previous example, the entire program that results from adding the recursive

likes/2 rule is shown in Figure 4; here are some examples of queries and responses given this
database:

| ?- likes(alan, beer).

yes
| ?- likes(alan, heather).

yes
| ?- likes(alan, alan).

yes
| 7-

34

drinks(alan, beer).
drinks(heather, lager).
likes(alan, coffee).
likes(alan, whisky).
likes(heather, gin).
hates(heather, whisky).
likes(heather, coffee).
bothlike(Person, Other, Drink):-
likes(Person, Drink),
likes(Other, Drink).

likes(Person, beer):-
drinks(Person, beer).

likes(Person, Other):-

likes(Person, Drink),
likes(Other, Drink).

Figure 4: The complete program so far

Consider the query What are all the things that Alan likes?. In Prolog we would ask this by
saying:

| ?- likes(alan, What).
and in response we would get:

What = coffee 7 ;
The question mark here is Prolog’s way of saying ‘what do you want me to do next?’. If we
just type return, Prolog will say yes and return us to the Prolog prompt. However, if we
type a semi-colon before we hit the return key, the Prolog interpreter will look for the next
solution and print that:

What = whisky 7 ;

We can keep asking for more answers:

What = beer 7 ;
What = alan 7 ;
What = heather
yes

If we decide that this is enough we can stop here.

35

5.3 Summary

The behaviour we have just seen, where Prolog can provide us with more than one answer
to a query, raises some interesting questions:

e How does Prolog get these solutions?

What order does it get them in?

e What are we really doing (or what is the Prolog interpreter doing) when we ask it to
find the next solution?

Does it matter what order the clauses are in?

These are all questions that will be answered in the next section where we will be looking
at backtracking in Prolog, and the use of trees to represent what the Prolog interpreter is
doing.

5.4 Exercises

Question 5.1 The following Prolog program is consulted by the Prolog interpreter.

big(bear).

big(elephant).

small(cat).

brown(bear) .

black(cat).

grey(elephant) .
dark(Animal) : - black(Animal).
dark(Animal) : - brown(Animal).

What will be the outcome of each of the following queries?

5.1a ?- dark(X), big(X).

5.1b ?- big(X), grey(Y).

5.1c ?- dark(D), small(D).

5.1d ?7- big(Animal), black(Animal).
5.1e ?- small(P), black(P), dark(P).

Question 5.2 The following Prolog program is consulted by the Prolog interpreter.

knows (A,B) : -
friends(A, B).

36

knows (A,B) : -
friends(A, C),
knows (C, B).

friends(john, alice).
friends(alice, tom).
friends(sue, john).
friends(sue, clive).
friends(fred, tom).
friends(tom, sue).

State whether the following queries succeed or fail. If a query fails, explain why.

5.2a ?7- knows(alice, john).
5.2b ?- knows(clive, sue).
5.2¢ ?- knows(alice, fred).
5.2d ?7- knows(sue, john).

37

5.5 Practical 1

This practical exercise is to be completed during the week 2 practical session. Questions
followed by a > ____________ > should have the answer entered in the space and then shown to
the lab demonstrator. The demonstrator will mark on the register that you have completed
the section. All practical exercises should be completed by the end of the module.

5.5.1 Getting Started

1. Copy the file famtree.pl to your home directory:
snoopy[14] cp /home/infteach/prolog/code/famtree.pl family.pl

This makes a copy of the file famtree.pl in your area and calls it family.pl.

5.5.2 Running Prolog

1. Give the command sicstus to get into Prolog:
snoopy [15] sicstus

You’ll see something like the following:

snoopy [15] sicstus

SICStus 3 #5: Tue Aug 26 10:14:51 BST 1997
(e

2. When you get the ‘| ?-’ prompt, type in the name of the file to be loaded into the
Prolog database (i.e., the file to be consulted):

| ?- consult(family).
{consulting /hame/helen/family.pl...}
{/hame/helen/family.pl consulted, 10 msec 1552 bytes}

yes
| 7-

or use the abbreviation for this instead (but don’t do both):
| ?7- [family].

You will now have the contents of the family.pl file in the Prolog database. The
Prolog interpreter will know everything that is in this file.

3. Look to see all the facts and rules (i.e., clauses) that Prolog knows about at the moment
by typing listing:

| ?- listing.

38

Don’t forget the full stop.

4. Instead of listing the whole program, just list parts of it by using the predicate listing
and the name of the predicate to be listed:

| ?- listing(parent).

parent (A, B) :-
father (A, B).

parent (A, B) :-
mother (A, B).

yes
| ?- listing(son).

son(A, B) :-
parent (B, A),
male(A).

yes

| ?- listing(daughter).

daughter(A, B) :-
parent (B, A),
female(A).

yes
| 7-

5. Now try the following goals, typing each in response to the ‘| 7-’ prompt. Guess
what you think will happen. See if it does. If it doesn’t quite do as you expect, can
you see why?

| ?- mother (mary,fred).

| ?- father(tom,sue).

| ?- father(cecil,fred).

| ?- male(jim).

| ?- father(tom,Who).

| ?- mother (Mother,fred).

| ?- mother(X,Y).

| ?- parent(fred,cecil).

| ?- daughter(jane,Who).

39

| ?- son(What ,How) .

| ?7- son(cecil,jane).

[answers 1]

6. Try seeing if there is more than one match for some of the above goals: by typing ;’,
you ask Prolog to look for another solution.

| ?- mother (mary, S).

S =tom 7 ;
S = jane 7 ;
S = fred 7 ;
no

| 7-

‘no’ here means ‘no more solutions’.

Try this with other goals.

7. Think of some goals of your own for Prolog to satisfy. Remember you can use ’,’ to
conjoin goals. By usingasking | 7- sad(jim),lonely(jim). you are asking if Jim is
both sad AND lonely.

How would you ask the following?

e Is Tom the father of Jim and of Sue?

o |\ -

e Who is the father of Cecil and the son of Mary?

o | -

e Is there anyone who has a son and is themself the son of someone?
I Y

e Do Jane and Fred have the same mother?

o | 7- [answers 2]

8. Load family.pl in Emacs by typing emacs family.pl.

9. Look at the rules and figure out how they work. Now see if you can write similar rules
for sister, brother, aunt and uncle. Write your rules in the spaces below. We will type
them into family.pl later.

Sister:

40

Brother:

Aunt:

Uncle:

[answers 3]

5.5.3 Getting out of Prolog

Type halt to get out of Prolog:
| ?7- halt.

You’ll see that you get the unix prompt again:

| ?- halt.

snoopy [16]

5.5.4 Editing the Program

We can alter the file family by using the editor ue (Emacs).

We can add some new clauses to the file. Then if we go back into Prolog and consult this
file, the new clauses will be known by the Prolog interpreter.

Because we have made the changes in the file itself, we can save them to be used again, and
we can also change them easily (for example, if we make a mistake in writing the clauses).
1. Get into the editor by typing the following:
snoopy[16] emacs family
2. Add some more people to the database.

3. We could also add the grandparent rule. You can put this anywhere in the file you
like.

41

grandparent (Grandparent, Grandchild):-
parent (Grandparent, Parent),
parent (Parent, Grandchild).

4. Save the file by typing CONTROL-X, CONTROL-C, or select save from the emacs menu.

You are now back at Unix command level.

5.5.5 Testing the Program

1. Look at the file to see your latest version.
snoopy [17] more family

2. Get into Prolog, and consult your new version of family.

3. Try out some goals that make use of the new clauses you've added. If you spot any
errors, you will need to edit the file again to alter it.

snoopy [19] prolog

SICStus 2.1 #9: Mon Jul 11 10:16:09 BST 1994

| ?7- consult(family).

{consulting /usr/local/dai/docs/dai/teaching/modules/1-prolog/code/famtree.pl...}
{/usr/local/dai/docs/dai/teaching/modules/1-prolog/code/famtree.pl

consulted, 10 msec 2784 bytes}

yes
| ?- listing.

5.5.6 More Things to Add
Try adding brother/sister and aunt/uncle clauses:

e Go back to the versions you wrote in the workbook;
e get into the editor;

e add to or change the text;

e save the file;

e get back into Prolog;

e consult the file;

e list the database;

e test the new clauses;

e look for any changes needed; and

e start again.

42

5.5.7 Harder Things

If you get this far, and are quite happy, then try something harder.

1. How would you add facts and rules (i.e., clauses) to the database to give information
about people’s ages, and to be able to answer questions like Is Fred older than Jim?
or How old is Sue?

Some hints:
e You could have a clause called age with two arguments, one for a person’s name
and the other for that person’s age; for example:

age(cecil,30).
age (mary,72).

e You can compare ages using ‘>’, which means ‘is greater than’. X > Y is true (the
goal succeeds) if whatever matches to X is greater that whatever matches to Y.

So, if X becomes instantiated to 72 and Y to 30, then the goal X > Y would succeed.
Try:
| ?7- age(cecil,X), age(mary,Y), Y>X.

(you have to add some ages to the database first).
2. There might be a rule
is_older (01ldPerson,YoungPerson)
which is true when the 01dPerson is older than the YoungPerson.
The whole rule, if we were comparing Mary and Cecil’s ages, would be

Mary is older than Cecil if
we know Mary’s age and
we know Cecil’s age and
Mary’s age is greater than Cecil’s age.

Try to write this rule in Prolog.

[answers 4]

3. We could have different rules for cases where we don’t know everyone’s age, but we
know that if Fred is the parent of Cecil then Fred must be older than Cecil. See if you
can write the corresponding Prolog rule.

[answers 5]

43

4. We might try to write a rule that looks like this:

Mary is older than Cecil if
Mary is older than someone and
that someone is older than Cecil.

[answers 6]

We are getting into more hairy ground here with clauses that have subgoals with the
same name as themselves. If a clause calls a clause of the same name (i.e., if it has
itself as a subgoal), we say that it is recursive.

If you repeatedly ask for multiple answers using ; you may find that eventaully Prolog

loops i.e. it is continually asking the same questions and not finding a solution. This
is the main problem with recursive clauses and will be dealt with in the next tutorial.

44

6 Backtracking

This section deals with Prolog’s search strategy, explaining how the Prolog interpreter back-
tracks to get more than one solution to a problem. The idea of using trees to represent the
way that the Prolog interpreter searches for solutions is also introduced.

6.1 Getting more than one answer

The version of the drinks program that we will use below is shown in Figure 5. The clauses
are numbered here to make it easier to refer to them later. Note that we are using a more
general version of clause 9 here than that introduced earlier: we have substituted a variable
for the occurences of beer in the corresponding rule.

Given this database, the question What are all the things that Alan likes? will cause the
following answers to be generated:

| ?- likes(alan, What).

What = coffee 7 ;
What = whisky 7 ;
What = beer 7 ;
What = alan 7 ;
What = heather 7 ;

After this solution we get no more; instead, the program seems to stop working, and we hear
nothing back from Prolog. In some implementations of Prolog, we will be presented with an
error message like the following:

%%% Local stack overflow — forced to abort %%k

In sicstus Prolog, the program doesn’t come back at all. To restore things to normal, you
have to type a Control-C character (hold down the key marked CONTROL or CTRL, and press
the ‘c’ key while the CONTROL key is depressed).

Prolog will then respond with

~C
Prolog interruption (h for help)?

At this point, you should type a to abort the program. Prolog will respond with

{ Execution aborted }
| ?7-

Why this problem occurs will become clear below; for the moment, we will focus on how the
Prolog interpreter gets all these solutions to the question.

45

drinks(alan, beer).
drinks(heather, lager).
likes(alan, coffee).
likes(alan, whisky) .
likes(heather, gin).
hates(heather, whisky) .
likes(heather, coffee).
bothlike(Person, Other, X):-
likes(Person, X),
likes(Other, X).
9. likes(Person, Drink):-
drinks (Person, Drink).
10. 1likes(Person, Other):-
likes(Person, Drink),
likes(Other, Drink).

P NSO W=

Figure 5: The complete drinks program

6.2 Representing Prolog’s behaviour using trees

The first solution to the query used above comes from the first match of 1ikes(alan, What)
with likes(alan, coffee), so we have the instantiation What/coffee.

If we take all the clauses in the database in order, this is the first clause to match (clause 3
in the table above). We can represent this as a tree with the root node being the top level
goal (likes(alan, What)) and its daughter nodes being either:

e subgoals that must be satisfied for this top level goal to succeed;
e an indication of success (shown as () where this goal can succeed directly; or

e an indication of failure (shown as) where there is no match that can made, either
directly or if other subgoals are satisfied.

The arcs of the tree will be labelled with the number of the matching clause, and alongside
will be written any instantiations that are made in the process of matching. Our first solution
is thus as shown in Figure 6.

If we want to find other solutions, what we are doing (in effect) is failing the match that we
have just found and saying ‘Look for the next one’. Whenever a match is made, the clause
that matches is noted and any instantiations are also noted by the interpreter. If we say
‘Go back and redo that match’ (by typing ¢;’) then the search for a solution continues from
where it left off. All instantiations made by this last match (that has now been made to fail)
are forgotten. So here, the Prolog interpreter ‘forgets’ What/coffee, then looks for the next
clause (after clause 3) that will match.

This will be clause number 4, with What/whisky (What instantiated to whisky); this is shown
in Figure 7.

46

| ?- likes(alan, What).

What/coffee

What = coffee

Figure 6: The first solution

| ?- likes(alan, What).

What/whisky
What/coffee

® O
What = coffee What = whisky

Figure 7: The second solution

47

| ?- likes(alan, What).

What/coffee drinks(alan, What)

X What/whisky

What = ff
a cottee 1 | What/beer

® O

What = whisky What = beer

Figure 8: The third solution

With game playing programs, we can draw a tree to show all the possible or potential paths
to a solution (all the legal moves); here, we use a slightly different kind of tree here to show
the solutions to the query.

After the match with clause 4, there are no more simple assertions that match. The next
match is with clause 9: in this clause, alan matches Person and What matches Drink. This
is a rule, however, so now we have to prove the subgoal in the right-hand side of the rule.

We represent the subgoal explicitly in the tree, and look for matches for it. This sub-
goal is treated as if it is a completely new goal, so a match is attempted for the subgoal
drinks(alan, What).

Prolog will look through the clauses in the database from the beginning until a match is
found; in the present case, we get a match with clause 1. So, the subgoal drinks (alan, What)
succeeds with What/beer. Since all of its subgoals have been satisfied, 1ikes(alan, What)
also succeeds. The corresponding tree is shown in Figure 8.

On redoing after this match, the interpreter will look for another match for drinks (alan, What)
first, forgetting the match of What to beer.

There is no other match for this goal, so Prolog will go back further up the tree and see if it
can redo the previous goal. This means looking for another match for 1ikes(alan, What)
after clause 9.

There is a match in clause 10. However, to satisfy clause 10, two new subgoals must be
satisfied first. These are likes(alan, Drink) and likes(What, Drink).

Note here that because What in the goal matches to Other in clause 10, both variables will
share the same value. The variable called Drink in the rule is a new one, so the Prolog
interpreter generates some new name for it. This will eventually get a value on matching,
but will not be passed back to the top level goal (simply because it doesn’t appear in it).

48

| ?- likes(alan, What).

3
What/coffee

What = coffee

9

drinks(alan, What) 10

What/whisky

4

1| What/beer

X
What = whisky likes(What, Drink)

What = beer _ . .
likes(alan, Drink)

3| What/alan
3 |Drink/coffee

O
Drink = coffee What(:>= alan

Figure 9: The fourth solution

Because there are now conjoined subgoals to match (1ikes (alan, Drink) and likes(What, Drink)),
these are both drawn in the tree and joined together to indicate that they both have to be
satisfied before the goal above them (their parent) can be satisfied; see Figure 9.

So, the first subgoal to be matched from clause 10 is likes(alan, Drink), which suc-
ceeds with D/coffee (as the first call of likes(alan, What)). The second subgoal now
becomes 1ikes (What, coffee). The first match to this new subgoal will be What/alan. So
likes (What,coffee) succeeds with What/alan.

It may not make to much sense in English to say Alan likes himself if he and himself both
like coffee, but logically it is fine.

If we redo once more, we go back to the last goal that succeeded, and redo it (that is, we
fail the last goal and look for the next match). In the present case, this means we forget
What/alan and look for another solution to 1ikes (What, coffee).

This will match to clause 7 with What/heather, as shown in Figure 10.

Things get messier from here on. The last goal to succeed was likes(What,coffee) with
What/heather (from clause 7); we try and redo this. The next clause that may give a solution
to likes (What,coffee) is clause 9, which could be paraphrased here as What likes coffee if
What drinks coffee. So, 1likes (What, coffee) succeeds if subgoal drinks(What, coffee)
succeeds. This fails altogether and we redo again.

Next we try the match with clause 10, meaning that What likes coffee if What likes SomeD
and coffee likes SomeD.* We get a first match to this with What/alan and Somedrink/coffee;
so the second subgoal 1ikes (D, SomeD) is now instantiated to likes(coffee, coffee).

6We will introduce new variables names from here on to make it easier to see what is happening.

49

| ?- likes(alan, What).

3
W 9

What = coffee

likes(What, Drink)

drinks(alan, What)
What/whisky

4

7
What/alan \ What/heather

1| what/beer What = alan

® L O
What = whisky What = heather

X
What = beer
likes(alan, Drink)
3|Drink/coffee

Drink = coffee

Figure 10: The fifth solution

Clauses 1 to 8 fail, and clause 9 is tried: likes(coffee, coffee) ifdrinks(coffee, coffee).
This fails, so clause 10 is tried again.

likes(coffee, coffee) if 1ikes(coffee, D2) and likes(coffee, D2)

This means we try again on likes(coffee, D2); again, clauses 1-9 all fail, and so we try
clause 10:

likes(coffee, D2) if 1ikes(coffee, D3) and likes (D2, D3)

Our new subgoal is 1ikes (coffee, D3), which again fails to match clauses 1-9, and so once
more we have clause 10:

likes(coffee, D3) if 1ikes(coffee, D4) and likes (D3, D4)

which creates a new subgoal ...

As you may have realised by now, we are never going to get a solution to this, and the
program will keep on trying to find new subgoals to match for clause 10, which each in turn
call clause 10, and so on. We have an infinite loop here.

6.3 Summary
You should have some idea now about how different solutions to a goal are achieved, and

how we can use tree to represent ‘getting all the solutions’. We will call this particular kind
of tree an augmented AND/OR tree, referred to hereafter as an AND/OR tree.

20

| ?- likes(alan, What).

likes(What, D)

What = .
likes (What, SomeD) 1likes(D, SomeD)

X What/alan 10
What = heather SomeD/coffee
O

likes (D, D2) likes (SomeD, D)

/A<

likes (D, D3) likes (D2, D3)

/A<

likes(D, D4) likes (D3, D4)

Figure 11: The infinite loop

51

In the next section, we will use a different example that includes a simple database and
clauses to help us answer questions about the contents of the database. Over the next few
sections, we’ll extend the program in various ways to make it easier to use.

6.4 Exercises

For each of the following programs, say if the query given fails or succeeds. Give any bindings
made as a consequence.

Question 6.1

a:-b,c
b.
c:-d.
d:-e.
?- a.

Question 6.2

a:-b,c.
c:-e.
b:-f,g.
b:-n.
e.

f.

n.

?7- a.

Question 6.3

do(X):-a(X),b(X).
a(X):-c(X),dX).

a(X):-e(X).
b(X):-£(X).
b(X):-c(X).
b(X):-d(X).
c(1).
c(3).
d(3).
d(2).
e(2).
£f(1).
6.3a ?7- do(1).

52

6.3b

6.3c

6.3d

7- do(2).

7- do(3).

7- do(A).

93

7 Built-in System Predicates

7.1 Introduction

In this section, we introduce a new example. This is a simple program that represents
knowledge about books, their publishers and the shops that stock these publishers. Over
the next sections, this program will be extended in a number of ways to make it easier to
use. In order to do so, we’ll make use of system predicates or built-in predicates.

7.2 The Example Program

The program shown in Figure 12 will be referred to as books1, and will be the simplest
version of the program that we will use.

The program contains a number of different predicates:”

e The predicate stocks/2 has two arguments: the first represents the name of a book-
shop, and the second the name of a publisher stocked by that shop.

e The first argument of book/2 is a book title, and the second is the book’s publisher.

e The open/1 and closed/1 predicates indicate whether particular shops are open or
closed.

7.3 Asking the Database Some Questions

We can ask Prolog questions about this database. The sort of questions we might want to
ask, in English, are things like:

e Which shop stocks Virago?
e Who publishes ET Rides Again?
e Where can I buy I Claudius?

In Prolog, the first two of these questions would be:

| ?- stocks(Shop, virago).

| ?- book(et_rides_again, Publisher).

The third question is a little more complicated. To answer Where can I buy I Claudius?, we
need to answer a number of questions as follows:

"Note: a predicate is a collection of clauses with the same predicate name and the same number of
arguments; the number of arguments of a predicate is the arity of the predicate.

o4

stocks(james_thin, sfipubs).
stocks(james_thin, virago).
stocks(james_thin, penguin).
stocks (menzies, sfipubs).
stocks (menzies, sams).

stocks (better_books, penguin).
stocks(better_books, virago).
stocks (edinbooks, sfipubs).
stocks (edinbooks, virago).
stocks (edinbooks, sams).

book(son_of_et, sfipubs).

book(et, sfipubs).
book(i_was_a_teenage_robot, sfipubs).
book(et_rides_again, sfipubs).
book(biggles_and_wendy, virago).
book(freda_the_fire_engine, virago).
book(dict_of_computing, penguin).
book(i_claudius, penguin).

book(of _mice_and_men, penguin).

book (cookbook, sams) .

open(menzies).
open(better_books) .
open (edinbooks) .
closed(james_thin).

Figure 12: The books1 program

95

e Who publishes I Claudius?
e What shop stocks this publisher?

e Is this shop open?
To do this in Prolog, we need a conjunction of goals:
| ?7- book(i_claudius, Publisher), stocks(Shop, Publisher), open(Shop) .
and in this case the answer would be:

Publisher = penguin,
Shop = better_books 7

Note that the first instantiation of Shop would be james_thin, but this would fail in the
attempt to match the third goal; the Prolog interpreter would then backtrack and redo
the second goal, instantiating Shop to better_books, after which open(better_books)
succeeds.

7.4 Using Rules

If questions about where books can be purchased are to be asked often, it is sensible to write
a rule to save repetition:

canbuy (Book, Shop) :-
book (Book, Publisher),
stocks (Shop, Publisher),
open (Shop) .

We can now ask simply:

| ?- canbuy(i_claudius,Shop).
Shop = better_books 7
yes

| 7-

7.5 Adding Built-in or System Predicates for User Interaction

We can now go on to make the program more interesting and interactive by using a number
of predicates provided by the system. These come for free and do not have to be defined by
the user. They are called system predicates or built-in predicates. One example of a
system predicate that we have already encountered is the predicate 1isting/0.

o6

| ?- go.

What book would you like to buy?

[: et.

You can buy et at menzies.

Would you like another book?

|: yes.

What book would you like to buy?

|: noddy_and_big_ears.

I don’t know where you can buy that book, sorry.
Would you like another book?

|: yes.

What book would you like to buy?

|: biggles_and_wendy.

You can buy biggles_and_wendy at better_books.
Would you like another book?

|: no.

I hope I was of some help to you. Have a nice day.
yes | 7-

Figure 13: An interactive session with the books program

| ?- listing.

This shows all clauses currently in the Prolog database. 1listing/1, on the other hand,
takes a predicate name as argument and lists all the clauses with that predicate name: so,
for example

| ?- listing(book).

shows all the clauses that have the predicate name book.

The Prolog interpreter prints out the values of all variables appearing in the top level goal,
but does not print the values of any other variables which are instantiated during the process
of satisfying the top level goal. The printing of variables and their values is really just a side-
effect of the matching process; it would be better if we had explicit control of the printing of
variable values. The system predicate write/1 gives us this control. There is also a system
predicate read/1 which allows a value to be given to a variable by being typed in by a
user. Both these predicates take a single argument that can be instantiated to any term:
that is, a variable, a constant, a number or any other atom, or a clause. Atoms include
characters enclosed in single quotes, such as ‘What book would you like?; this permits strings
of characters commencing with capital letters and containing spaces to be written out.

So if we wanted another user to use the books program, we could make it interact with the
user, having the program ask questions and read the user’s responses. The dialogue might
go something like that shown in Figure 13 (program output is printed here in italics).

To carry out this dialogue, we need to augment the program by adding a predicate that:

e asks the user what book they would like;

o7

e reads the reply;
e finds where the book can be bought; and

e tells the user.
We might call this predicate askbook, and it might look something like the following:

askbook: -
write(’What book would you like to buy?’), nl,
read(Book), nl,
canbuy (Book, Shop),
write(’You can buy ’),
write (Book),
write(’ at ’),
write(Shop),
write(’.’).

The system predicates used here are write/1, read/1, and n1/0. nl/0 has the effect of
printing a new line.

When the read/1 predicate is called, the interpreter prints a new prompt, ‘| :’, and waits
for the user to type a term terminated by a full stop. The value of the variable argument
of read/1 becomes instantiated to the term the user types. This provides a way to input
values to a program.

If the book whose name was input does not exist or cannot be bought—that is, if the
canbuy/2 predicate fails—the Prolog interpreter will attempt to backtrack through nl, read,
and write. These predicates cannot be re-satisfied (or redone), so an attempt will then be
made to redo the predicate askbook/2. If there were no other askbooks/2 clause, the whole
program would fail here. However, we can add a second clause that simply writes a message
to the user (telling them that the book is unknown) and succeeds:

askbook: -
write(’I don’’t know where you can buy that book, sorry.’).

Note the use of the double single quote here to allow us to print a single quote as part of a
string that is itself delimited by single quotes.

7.6 Looking for Multiple Responses
We could extend the program further, allowing the user to ask about more books. This can

be done by putting askbook/0 as a subgoal to another clause go/0; the predicate go/0
then becomes the top level predicate, and will do the following:

e call askbook/0, asking the user which book they want and responding accordingly;
e offer to find another book;

e check the user’s reply;

o8

go:-
askbook, nl,
write(’Would you like another book?’), nl,
read (Reply), nl,
check(Reply), nl.

check(Reply) : -
Reply = yes,
go.

check(Reply) : -
write(’I hope I was of some help to you. Have a nice day.’).

Figure 14: The Prolog code to allow repeated requests

e if the user types yes, then go/0 will be called again;

e if anything else is typed in response, the program stops.

The corresponding Prolog code looks like that shown in Figure 14.

7.7 Dealing with Arithmetic Operators

Arithmetic operators are another type of system predicate. The operators then enable us to
do arithmetic in Prolog are:

+ - * / add minus times divide

There is also a system predicate that the results of applying these operators, called is/2.
All of the arithmetic operators can be used as infix (between arguments) or as prefix (like a
predicate), for example:

e.g.

7- X is 3+7.
X=10

?7- B is +(2,99).
B=101

?- B is 8 + 3.

B=11

99

Note that you need to put spaces either side of is/2:

Dis7+2.
no

?7- 3 is 2 + 1.
yes

7- 4 is 4.
yes

-4 =4,
yes

Note also that = and is mean different things: = means will unify with whereas is/2
means evaluates to.

?7-4 =3+ 1.
no

?7- 4 is 3 + 1.
yes

Prolog must be able to evaluate the right hand side of is/2: If there are variables on the
right hand side that are uninstantiated then it will fail.

?7- S is H+2.

% Error: uninstantiated variable in arithmetic expression: _68

no

?7- X is 3+3.
X=6

yes

| ?7- S is X+3.

%% Error: uninstantiated variable in arithmetic expression: _68
no

?7- X is 3+3,Y is X+2.
X=6

Y=8
yes

60

Expressions can be complex, in the same way as ordinary arithmetic expressions.

| ?- Sum is 4+3-6+2.
Sum=3
yes

| ?- Sum is 3%4.
Sum=12
yes

| ?- Ans is 3%4-5.
Ans=7
yes

The left hand side is never evaluated:

| 7- 3+4 is 7.
no

| 7- 3+4 is 3+4.
no

| ?- P is 5/8.
P=0.625
yes

Comparisons of the sort </2(less than), >/2(greater than), >=/2(greater than or equal to),
and =</2(less than or equal to) can also be made:

| 7- 4>3.
yes

| 7- 3>4.
no

| ?- 5<10.
yes

| 7- 5<3+8.
yes

| ?- 5%6>9+10.
yes

| ?7- 5>=5,
yes

61

| 7- 8=<16.
yes

| ?- 3-1+6%4-2<7%8+8-10.
yes

Note that system predicates cannot be traced 2:
| ?- trace,3-1+6%4<7x8+8-10.
yes

Prefix notation can also be used instead of the more common infix notation:

| ?7- <(+(-(3,1),%(6,4)),+(x(7,8),-(8,10))).
yes

| ?7- T is +(_(391)3*(6:4))-
T=26

| 7= P is +(*(7,8),-(8,10)).

P=54
yes
| 7- 26<54.
yes

We have so far represented two types of equality: =/2 tests whether two terms can unify,
and is/2 checks if the value of an arithmetic expression matches the value of a term. But
these arn’t the only types. We can check if the value of two arithmetic expressions are the
same by infixing them with =:= or not equal using =\=.

| 7- 243 =\= 3+3.

yes
| 7- 2+3 =\= 3+2.

no

| 7- 243 =:= 3+2.

yes

| ?7- X=2,Y=3,X+Y =:= Y+X.
X =2,

Y=37

yes

| ?7- X=2,Y=3,X+Y =\= Y+X.
no

8see later section on Tracing and Debugging

62

We can also check if two terms have literal equality using ==/2. This checks if the two
terms are identical; that is, they have exactly the same structure and all the corresponding
components are the same. In particular, the variable names also have to be the same. The
complementary relation is 'not identical’ written \==.

| 7- X == X.
true 7

yes

| 7- X == Y.
no

| 7- 2+3 == 2+3.
yes

| 7- 243 == 3+2.
no

| 7- X \==1Y.
true 7

yes

7.8 Summary

Whilst this extended program (which will be called books?2) is an improvement on the basic
program we started out with, it is still a little limiting in a number of respects:

1. There is little flexibility in the set of responses that can be given to the question
Would you like another book?. In particular, note that responses other than yes have
the following effects:

e |: y. fails to match.
e |: Yes. is a variable, and so becomes bound to yes and succeeds.
e |: No. also becomes bound to yes and succeeds.

2. In each case, the canbuy/2 predicate only finds the first solution, rather than offering
all possible solutions to the query.

In the next section we consider how these limitations can be avoided by introducing data
structures called lists that can be used to represent a collection of objects (for example, all
the possible shops that a particular book can be bought from).

63

7.9 Practical 2: Constructing Databases

7.9.1 Part 1: Writing a Program to Find Who is Where

This practical is about writing a program to incorporate information about the location of
people and their phone numbers. Your program should be able to answer questions like
Where is Fred? and What is Fred’s phone number? (given in appropriate Prolog terms, of
course). Your program will also know about people visiting others and how to contact them.

1. Write predicates to incorporate the following information:

Helen has room F5.
Frank has room E6.
Paul has room F9.
Han has room E6.
Robert has room F9.
Dave has room E10.
Henry has room E12.
Janet has room E11.
Graeme has room E13.

For each fact, use a predicate room with two arguments: the first argument will be the
person, and the second the room number.

Wite a couple of example facts here:

2. Use MicroEmacs (ue) to put these clauses into a file on your area. Check that there
are no errors. Then go into Prolog and consult this file.

3. Test the program by asking questions such as (write the prolog version in the spaces):

Which is Dave’s room?
Who has room F9?

4. Add some more clauses to store the telephone number for each room. Use a predicate
phone with two arguments (hereafter referred to as phone/2): the first argument should
be the room number and the second should be the extension number. The extensions
are as follows:

Room Tel No.
E10 231
E12 233
E11 244
E13 237
F5 242

64

F9 239
E6 247

Wite a couple of example facts here:

5. Again, use the editor to edit your original file, then go back into Prolog and consult
the file and test it. Ask questions like:

Which room has extension 2397
What is room E6’s extension?

6. Add a rule that will allow you to find out a person’s phone number, if you know their
room number and the phone number for that room. Use a predicate ring/2, whose
first argument should be the person and second argument their phone number. So, a
declarative reading for the rule you have to write might be something like

P can be rung at number N if P is in room R and room R has number N.

Wite your Prolog code here:

7. Again, edit the file, consult it and test it.

7.9.2 Complicating the Program

Suppose there are other people we know about, but instead of knowing their room numbers,
we know whether or not they are visiting the office of someone else we know about. In this
section, we’ll incorporate this kind of information into the program.

1. To find out where someone is, first you would check to see if you have their room
number, and if not, you would then check to see if they are visiting someone else and
you have that person’s room number.

Add the following information, using a predicate visiting/2:

Alan is visiting Helen.
Liam is visiting Paul.
Jane is visiting Alan.

Also, add a rule that tells you how to find people: you can find person P if they are
in their room, or (if that fails) you can find person P if they are visiting person Q and
you can find person Q.

65

Use a predicate £ind/2, the first argument being the person you want to find and the
second being the room that they are found in (even if it is the room of the person they
are visiting).

Wite your Prolog code here:

2. Edit the program, run it and test it by asking the following questions and some others
of your own:

Who is Alan visiting? [Answer]
Where can you find Dave?
Where can you find Jane?
Who is in room F9?

3. If you alter the predicate ring, so that it has the subgoal of find(Person,Room)
instead of room(Person,Room), you should be able to get the phone number you need
to know in order to contact any person, even if they are visiting somebody else (or
even if they are visiting someone who is already visiting someone!).

Do this and test it: find everyone’s phone numbers.

7.9.3 Part 2: The Basic books Program

We start by using the first version of the books program as discussed earlier in this chapter.
More complicated versions of this program will be used later.

1. Copy the file that contains the books program from the /home/infteach/prolog/code
area.

cp /home/infteach/prolog/code/booksl.pl booksl
2. Start Prolog and consult the file:
consult (books1) .

3. List the contents of the database and see if you can work out what sort of questions
you could ask. A complete listing is provided in Figure 15.

4. Work out how to ask the following questions:

(a) Which publisher publishes ET?

66

stocks(james_thin,sfipubs).
stocks (james_thin,virago) .
stocks(james_thin,penguin).
stocks (menzies,sfipubs).
stocks(menzies,sams) .

stocks (better_books,penguin) .
stocks (better_books,virago) .
stocks (edinbooks,sfipubs) .
stocks (edinbooks,virago) .
stocks (edinbooks,sams) .

book(son_of_et,sfipubs).
book(et,sfipubs) .
book(i_was_a_teenage_robot,sfipubs).
book(et_rides_again,sfipubs).
book(biggles_and_wendy,virago) .
book(freda_the_fire_engine,virago).
book(dict_of_computing,penguin) .
book(i_claudius,penguin).

book(of _mice_and_men,penguin) .

book (cookbook, sams) .

open(menzies).
open(better_books) .
open(edinbooks) .
closed(james_thin).

canbuy (Book, Shop):-
book (Book, Publisher),
stocks (Shop, Publisher),
open (Shop) .

Figure 15: The books program, first version

67

(b
(c) Which shop stocks Penguin books?

)
)
@)
)
)
)

[Question] _____ _______________ [Answer] _____ __ ___________

o

(e) Where can you buy I Claudius?

(f

(g) Is there any publisher who publishes both Freda the Fire Engine and Biggles and
Wendy?

5. Try a few questions of your own. Test the program fully to see exactly how it works,
and where it fails.

7.9.4 The books Program—Simple Interactive Version

Once you are quite happy and sure of what is going on with the first version of the books
program, you should explore the next version.

1. Get out of Prolog. Copy the file that contains the interactive version:
cp /home/infteach/prolog/code/books2.pl books2

2. Get back into Prolog again and then consult your new file.

This is a more complicated program; a partial listing is provided in Figure 16. Try
and see what it does and how it works by asking some questions.

3. Try adding a new book to the database (try book(bratko,addison_wesley)). What
happens when you try to buy this book? Does the systems response differ from when
it doesn’t recognise the name of the book?

4. Think of the different ways in which your request can fail and try to add extra clauses
to the database to generate specific responses in this instances. Write your additions

below.

7.9.5 Writing your own Database

Once you have made sure you know exactly what is going on in the books2 program (and
you might want to play a little with the read and write predicates to check this), then write
a database of your own.

68

stocks(james_thin,sfipubs).
stocks(james_thin,virago) .

stocks (edinbooks,sams) .

book(son_of_et,sfipubs).
book(et,sfipubs).

book (cookbook, sams) .

open(menzies) .
open(better_books) .
open(edinbooks) .
closed(james_thin).

canbuy (Book, Shop) : -

go:-

book (Book,Pub) ,
stocks (Shop,Pub),
open (Shop) .

askbook, nl,

write(’Would you like another book?’), nl,
read(Reply), nl,

check(Reply), nl.

askbook: -

write(’What book would you like to buy?’), nl,
read(Book), nl,

canbuy (Book, Shop),

write(’You can buy ’),

write (Book),

write(’ at),

write(Shop),

write(’.?).

askbook: -

write(’I don’’t know where you can buy that book, sorry.’).

check(Reply) : -

Reply = yes,
go.

check(Reply) : -

write(’I hope I was of some help to you. Have a nice day.’).

Figure 16: The second version of the books program

69

Extend it in the same way the books program was extended, so that someone else can use
it.
For example, you could put your timetable in it, and allow the user to query when you are

free. You might want to include information about time and place of lectures, tutorials and
practicals.

Test it on your neighbour. Explain how it works and then let them try it.

[This section is optional but is good practice if you have time left during the practical session]

70

8 Lists

8.1 Introduction

In this section, we introduce a third version of the books program. This version will collect
together all solutions to the canbuy(Book, Shop) goal and then print out the list of open
shops.

In order to understand how this program works, this section is largely devoted to presenting
the list data structure.

8.2 The books3 Program
8.2.1 The Example Database

The basic database that the books3 program uses is as before, and repeated in Figure 17.

8.2.2 The Rules

This version of the program uses the same predicates as before, as shown in Figure 18. Note,
however, that the askbook/0 and canbuy/2 clauses do more in this version of the program:
we have added subgoals that use the new predicates prlist/1, possible/2, and filter/2,
and changed the behaviour of canbuy/2 and check/1 a little.’

8.2.3 How It Works

The basic structure of the books3 program is as follows:

e ask what book the user wants;
e see where it can be bought:

— find out its publisher;
— see which shops stock this publisher (make a list of these);
— make a new list of the open shops that stock that publisher; and

print out the list.
e ask the user if she would like another book:

— if the reply is positive, do the whole thing again;

— otherwise, stop.

9The possible/2 and filter/2 predicates will not be discussed here.

71

stocks(james_thin, sfipubs).
stocks(james_thin, virago).
stocks(james_thin, penguin).
stocks (menzies, sfipubs).
stocks (menzies, sams).

stocks (better_books, penguin).
stocks(better_books, virago).
stocks (edinbooks, sfipubs).
stocks (edinbooks, virago).
stocks (edinbooks, sams).

book(son_of_et, sfipubs).

book(et, sfipubs).
book(i_was_a_teenage_robot, sfipubs).
book(et_rides_again, sfipubs).
book(biggles_and_wendy, virago).
book(freda_the_fire_engine, virago).
book(dict_of_computing, penguin).
book(i_claudius, penguin).

book(of _mice_and_men, penguin).

book (cookbook, sams) .

open(menzies).
open(better_books) .
open (edinbooks) .
closed(james_thin).

Figure 17: The books3 database

72

go:-
askbook, nl,
write(’Would you like another book?’), nl,
read (Reply), nl,
check(Reply), nl.

askbook:

write(’What book would you like to buy?’), nl,
read(Book), nl,

canbuy (Book, Shops),

write(’You can buy ’),

write (Book),

write(’ at),

prlist(Shops),

write(’.”).

askbook: -
write(’I don’’t know where you can buy that book, sorry.’).

canbuy (Book, OpenShops) :-
book (Book, Publisher),
possible(Publisher, List0fShops),
filter (List0fShops, OpenShops).

check (Reply) : -
member (Reply, [’Yes’,yes,’Y?,y]),

go.

check(Reply) : -
write(’I hope I was of some help to you. Have a nice day.’).

Figure 18: The rules used in the books3

73

8.2.4 The member Predicate

In our new rules, notice that check/1 includes the goal
member (Reply, [’Yes’,yes,’Y’,yl)

The member/2 predicate is used here to check whether the Reply is one of a list of possibilities.
More generally, member/2 tests whether an element is a member of a list; the Prolog code
for member is as follows:

member (X, [X]|_1).

member (X, [_|Rest]):-
member (X,Rest) .

Note the use here of the variable _. This is referred to as the anonymous variable and is
used in place of a named variable (such as A or _73) in cases where there is no further need
to refer to this variable at any point later in the clause. In this case, once we have matched
the head of the list to the element in the first argument, we no longer need the rest of the
list, so use _ to denote it.

member/2 is probably the most commonly used predicate in Prolog but it is not a built-in
predicate, in otherwords, it is not available to the Prolog interpreter by default. Everytime
you want to use it you must include it in your code explicitly or consult a file which contains
it. You will find that there are a lot of predicates like this (a lot of which you will develop
in the practical sessions) and it is useful to make a file of these predicates and then consult
this file whenever you need them (consulting will be dealt with in chapter 10).

8.2.5 The prlist Predicate

The prlist/1 predicate prints out each element of a list on a separate line. The Prolog code
is as follows:

prlist([]).
prlist([Head|Rest]):-

nl, write(Head),
prlist(Rest).

8.3 Lists

8.3.1 Basics

If we need to put a number of items together in one structure, perhaps in order to manipulate
them as a single structure, we can build a data structure called a list. An example would

be a list of all the shops in the books program:

74

List Head Tail

[a, b, ¢, d] a [b, ¢, d]

[a] a (1

] fails fails

[[the, cat], sat] [the, cat] [sat]

[the, cat] the [cat]

[the, [cat, sat]] the [[cat, sat]]

[the, [cat, sat], down] the [[cat, sat], down]
x, v, Z] X [y, z]

Figure 19: Some lists and their heads and tails

[better_books, menzies, edinbooks, james_thin]
A list is defined as follows:
A list is an ordered sequence of elements.

Lists can be used to represent practically any kind of structure. In fact, lists are such a
general data structure that computing languages have been built based entirely upon them;
this is true of the language Lisp, for example.

A list can be either

e an empty list, written as ‘[1’; or

e a list containing one or more elements, each separated by commas and all enclosed in
square brackets (‘[’ and ‘1’).

Here are some examples of lists:
o [1]

e [a, Db]

e [a, X, j]

8.4 Manipulating Lists

A list can be manipulated by splitting it into its head and its tail. The head of the list is
the first element of the list, and the tail of the list is the rest of the list. Further examples
of lists, together with their heads and tails, are shown in Figure 19.

In order to split lists into their heads and tails, we use a list destructor. This is represented
by the character ‘|’. So, the list with head X and tail Y is represented as

[x1Y]

75

8.4.1 Matching Lists
By using the list destructor together with Prolog’s unification (Prolog’s matching mecha-

nism), we can easily split any list in order to access any of its elements (or to transform lists
in some way, or build new ones).

If we match the two lists
[x1Y]

and
[the, little, dog]

then X is instantiated to the, and and Y is instantiated to [little, dogl. Some other
examples of attempts to unify lists are shown in Figure 20

Element order is important:

e [foo,bar,baz] is not the same as [baz,bar,foo]

8.4.2 Constructing and Destructing Lists

The basic approach:

e To take a list apart, split the list into the first element and the rest of the list.

e To construct a list from an element and a list, insert the element at the front of the
list.

List Destruction:

[AlB] = [1,2,3,4]

A
B

1
[2,3,4]

The first element is the head of the list; the remainder is the tail of the list.

List Construction:

e Take a variable bound to a list: for example
01dList = [happy,sad]

e Add the new element to the front:

76

[john, june,A] = [X,Y,tom]. A=tom X=john Y=june yes
(simple match of variables and constants)

[HIT] = [c,b,al. H=c T=[b,a] yes
(splits list into head and tail)

(HIT] = [1. no
(the empty list cannot be split by the list destructor ’|’)

(Al [B,C]] = [c,b,al. A=c B=b C=a yes
([Al[B,C]] same thing as [A,B,C])

[a,X] = [X,b]. no
(X cannot unify with two different constants a and b)

[sue, [dick,wendy],P] = [P,Q,R]. P = sue, Q = [dick,wendy],
(P and R share) R = sue yes

[X1Y] = [a(b,c),b,c]. X = a(b,c), Y = [b,c] yes

[[X],Y] = [a,b]. no

(constant ’a’ cannot match to list [X])

[alX] = [A,B,y] A =a, X=[B,y]l yes

[fred| [1] = [X]. X = fred yes

([fred|[1] same as [fred])

[a,b,X,c] = [a,b,Y]. no
(different length lists)

[HIT] = [tom,dick,mary,fred]. H= tom T = [dick,mary,fred] yes

[[sue,tom],[10,9]] = [names,ages]. no
(constants don’t match lists)

Figure 20: Some examples of list matching

7

NewList = [grumpy|0ldList]
Bigger Chunks:
e You can always directly access any number of elements at the head of a list.
e To add grumpy and elated to 01dList:

NewList = [grumpy, elated|0ldList]

e To remove three elements: suppose 01dList is bound to a list of three or more elements,
then

0l1dList = [One,Two,Three|Remainder]

8.5 Summary

In the next section, we go on to look at list manipulation in more detail.

8.6 Exercises

Question 8.1 How many elements are there in each of the following list structures?

e.g. the length of [foo,bar,baz] is 3
the length of [foo,1,[a(X)],[1],[foo,bar]] is 5

8.1a [a, [a, [a, [a]l]]]

8.1b [1,2,3,1,2,3,1,2,3]
8.1c [a(X),b(Y,Z),c,X]
8.1d [[sum(1,2)], [sum(3,4)], [sum(4,6)]]

8.1e lc,[d, [x11,[£(s)], [r,h,a(t)], [[[al]]]

Question 8.2 The predicate = takes 2 arguments and tries to unify them. For each of the
following:

e specify whether the query submitted to Prolog succeeds or fails;
e if it succeeds, specify what is assigned to any variables;

e if it fails, explain why it fails.

78

e.g. ?- [HIT] = [1,2,3]. yes
?- [a, bl = [c, Al. no
?- [A,john,C] = [jim,B,tom]. yes

8.2a 7- [A,B,C,D] = [a,b,c].

8.2b ?- bar([1,2,3]) = bar(A).

8.2c 7- [X,[11 = [XI.

8.2d 7- [X,Y|Z] = [a,b,c,d].

8.2¢ 7- [1,X,X] = [A,A,2].

8.2f 7- likes(Y,a) = likes(X,Y).

8.2g 7- [foo(a,b),a,b] = [X|Y].

8.2h 7- [b,Y] = [Y,a].

8.2i ?7- [HIT] = [red,blue,b(X,Y)].

8.2j 7- [1,[a,bl,2] = [[A,B],X,Y].

8.2k 7- test(a,L) = test(E,[b,c,d]).

8.21 7- [[a,[bl],C] = [C,D].

8.2m ?- [fred|T]=[H| [sue,johnl].

H=1, T=[2,3].
because a and ¢ are constants
and constants cannot unify

with each other.

A=jim, B=john, C=tom.

Question 8.3 Imagine that this program is consulted by the Prolog interpreter:

foo([1,[1)

foo([HIT],
H

[X1Y1]):-
= X,

foo(T,Y).

[Note: this program tests if two lists unify by testing if the heads unify then recursing on

the tails]

What will be the outcome of each of the following queries?

79

8.3a

8.3b

8.3c

8.3d

8.3e

)
|

N
|

N
|

foo([a,b,c], A).

foo([c,a,t], [c,u,t]l).

foo(X, [b,o0,0]).

foo([plL]l, [Fl[a,bl]).

foo([X,Y], [d,o0,gl).

80

9 Manipulating lists

9.1 Introduction

In this section we will look more closely at manipulating lists.

9.2 The predicate member/2
9.2.1 Building the predicate

Suppose we have a list of names like the following;:
[fred, john, ann, mary].

and we want to know if a given person is in this list.

We first ask if the person has the same name as the head of the list:

e if so, we have succeeded;

e if not, then we see if the person is one of the rest of the list, that is, if the person is in
the tail of the list.

e So, we take the tail of the list and ask if the person has the same name as the head of
this list:

— if so, we have succeeded;
— if not, then we see if the person is in the tail of this list.
— So, we take the tail of the list ...

And so on, until we run out of list and fail to find the person.

So we need to write a set of clauses to test membership of a list. We will call it the member
predicate. It will need two arguments, the item to be looked for and the list to look for it
in. We'll refer to this predicate as member/2.

In this predicate,

e cither the item will be the head of the list;
e or it will be in the tail of the list;

e or there will be no match and it will fail.

So we need to consider these three possibilities, or cases. The first clause we can specify, in
English, as:

X is a member of a list if X is the same as the head of the list.

81

The second clause will be:
X is a member of a list if it is a member of the tail of the list.

Consider how we write these in Prolog. The first argument of the member/2 predicate is the
element to be found, and the second is the list:

member (X, AList):-

But we have to somehow get at the head of this list. We use the list destructor and unification
to do this for us:

member (X, [HIT]):-

So, the first case becomes

member (X, [H|T]):-
X = H.

and the second becomes:
member (X, [H|T]):-
X. \== N

member (X, T).

Note that here member/2 has the subgoal member/2, so by definition it is recursive: it calls
itself.

9.2.2 Cleaning Up

We have some redundancy in these two clauses.

Let’s take the first clause first:

1: member (X, [H|T]):-
X = H.

We want to test whether or not X and H unify. It is easier to test that by calling them
both the same; that is, by making them the same variable. Note that doing this makes the
subgoal redundant:

1: member (X, [XI|T]).

If this succeeds then we never test the second clause. Put another way, if we reach the second
clause, the goal X = H must have failed. So by the time we get to the second clause, we
know that X \== H and so we do not need to test it again. The second clause then becomes:

2: member (X, [H|T]):-
member (X, T).

82

9.2.3 Recursion in List Processing

Any program that calls itself as a subgoal is recursive. A lot of other list processing
programs are recursive. They have the following general pattern:

e split the list;
e do something to the head of the list (test it or process it); and

e recurse on the tail of the list.
Or, in a schematic Prolog form:

recpred([HIT]) :-
test (H),
recpred(T).

In recursive predicates there are usually at least two cases:

1. the base case or boundary condition, which stops the recursion (eventually): this
could be when some condition is true (for example, when the name sought is the head
of the list, or when we are left with the empty list);

2. the recursive case, which has the goal that recurs, often calling subgoals with shorter
and shorter lists (the tail of original list, the tail of the tail of the original list, and so
on) as arguments.

An example of a recursive program we have already encountered is 1ikes/2, in the case
where some person likes another if both the person and the other likes the same drink.

9.2.4 And/Or Trees for Recursive Predicates

Here is the predicate member/2 with an example goal and the AND/OR tree to illustrate the
execution of this goal:

First, the member/2 predicate:

—_

member (X, [X|T]).
2: member (X, [H|T]):-

member (X, T).
Suppose we present Prolog with the following goal:

| ?- member(ann, [fred, john, ann, mary]).

The behaviour of Prolog that follows is represented in the AND/OR tree in Figure 21.

83

| ?- member(ann, [fred, john, ann, mary]).

LT

member (ann, [john, ann, mary])

1 X

ann#fred member (ann, [ann, mary])

ann#john

O

Figure 21: An AND/OR tree representation of member

9.3 Other List Processing Predicates
9.3.1 Printing a list of elements

Suppose we have a list [a, b, c, d], and we want to print it out. We can define a predicate
prlist/1, which takes a list as its argument and simply uses write/1 to write it out:

prlist(X):-
write(X).

For our example list above, this would produce the output

| ?- prlist([a, b, ¢, dl).
[a,b,c,d]

yes

| ?-

However, suppose we want to print each element of the list on a separate line. This means
we have to print the elements one at a time. We can define a recursive procedure to do this:

To prlist a list of elements:

e write the head of the list; and
e prlist the tail of the list.

The Prolog code to do this is as follows:

84

prlist([HIT]):-
write(H), nl,
prlist(T).

We also need to know when to stop, of course. The printing should stop when we have no
more elements to write, i.e., when the list to be prlisted is the empty list. So, we also need
the following clause:

prlist([]1).

The full program is then as follows:

1: prlist([1).

\item[{\rm 2:}]

prlist([HIT]):-
write(H), nl,
prlist(T).

9.3.2 Checking that no element of a list of letters is a consonant

Suppose we want to be able to test each of the elements of a list to check that none of them
are consonants. We can define a predicate no_cons/1, which has the same basic pattern as
before: we test or process the head of the list, and then recurse on the tail of the list. The
empty list provides the base case.

The test we’ll use here is actually whether the element is a vowel, rather than whether it
isn’t a consonant. The code is then as follows; note that we have to include facts that tell
Prolog which characters are vowels.

no_cons([1).

2: no_cons([H|T]) :-
vowel (H),
no_cons(T) .

3: vowel(a).

4: vowel(e).

5: vowel(di).

6: vowel (o).

7 vowel (u) .

Here are some example goals presented to Prolog with this database loaded:

85

max([H|T], Answer):-
max (T, H, Answer).

max([], Answer, Answer).
max ([HIT], Temp, Answer):-
H > Temp,
max (T, H, Answer).
max([H|T], Temp, Answer):-
max (T, Temp, Answer).

Figure 22: The max predicate

| ?- no_cons([a,e,e,o,ul).

yes
| ?- no_cons([a,r,e]).

no
| 7-

9.4 More List Processing Predicates
9.4.1 Finding the maximum of a list of numbers

The predicate max/2 has two arguments: the first is a list of numbers, and the second is the
maximum of that list. If the predicate is called with the second argument uninstantiated,
then this argument will become instantiated to the maximum of the list; this might be
thought of as returning a single element as the result of processing the complete list.

As before, the head of the list is processed, and the program then recurses on the rest of the
list. The Prolog code is shown in Figure 22.

Note that the predicate max/3 is called by the predicate max/2. The additional middle
argument is the current (temporary) maximum, instantiated each time a higher value is
found as the program recurses down the list. Initially this is set to the head of the list.

max/3 has three cases:

e The first case of max/3 is the base case: if the empty list is being processed, then the
current maximum is the final one.

e In the second case, if the head of the list is greater than the current maximum then it
becomes the new current maximum, and the rest of the list is recursed on.

e In the third case, if the head of the list is not greater than the current maximum then
the current maximum stays the same, and again the rest of the list is recursed on.

86

sentence:-
noun(N1), write(’ ’), write(N1),
verb(V1), write(’ ’), write(V1),
noun(N2), write(’), write(N2).

noun(fred) .
noun (beer) .
noun(doris).
noun(gin) .

verb(likes).
verb(drinks) .

Figure 23: A simple sentence generator

9.4.2 Building new list structures

As well as recursing down a list, testing all the elements (as we did in member/2 and
no_cons/1), or returning a single element (as we did in max/2), we may want to process
each element and build a completely new list data structure.

Suppose, for example, we want to generate a sentence. We could simply pattern match for
each word category (to begin with, noun and verb) and write the resulting word: such a
generator might look like that shown in Figure 23.

Note that this code provides no way of saving the sentence generated as a whole. To get
around this, we could make each new word a successive element of a new list. We can do
this in the head of the sentence clause directly:

sentence ([N1,V1,N2]):-
noun(N1),
verb(V1l),
noun(N2) .

In a later section, we will look at the special mechanism Prolog provides for writing grammar
rules.

9.5 Exercises

Question 9.1 The predicate member/2 succeeds if the first argument matches an element
of the list represented by the second argument.

e.g. ?- member(1,[2,3,1,4]). yes

member/2 is defined as: 1. member(E1l, [E1IT]).

87

2. member(E1l, [HI|T]) :-
member (E1,T) .

For each of the following:

e specify whether the query submitted to Prolog succeeds or fails;

e if it succeeds, specify what is assigned to any variables.

9.1a 7?- member(a,[c,a,b]l).
9.1b ?- member(a,[d,o0,gl).
9.1c ?- member(one, [one,three,one,four]).
9.1d ?- member (X, [c,a,t]).

9.1e ?7- member(tom,[[jo,alan], [tom,annel]).

9.1f Complete the AND/OR tree below which represents the execution of the query:

?- member(a, [b,r,e,a,d]l).

/ \
/1 2\
/ \
a=b member(a, [r,e,a,d])
fails / \
1/ 2\
/ \
a=r member(a, [e,a,d])
fails

Question 9.2 The predicate no_cons/1 succeeds if all elements of the list represented by
the one argument are vowels (as specified by vowel/1).

e.g. ?- no_cons([a,e,i]).
yes

? no_cons([a,b,c]).
no

no_cons/1 is defined as:

1. no_cons([]1).
2. no_cons([HIT]) :-vowel(H) ,no_cons(T).

88

3. vowel(a).
4. vowel(e).
5. vowel(di).
6. vowel(o).
7. vowel(u).

For each of the following:

e specify whether the query submitted to Prolog succeeds or fails;

e if it succeeds, specify what is assigned to any variables.

9.2a ?- no_cons([a,a,e,i]).

9.2b 7- no_cons([A,e,e]).
9.2c Complete the AND/OR tree below which represents the execution of the query:

?- no_cons([a,e,i]).

/ I\
1/ 21 __\ H/a T/ [e,1i]
/ I \
a=[] vowel(a) no_cons([e,i])
fails | I\
3] 21__\ Hi/e T1/[i]
I I \
succeeds vowel(e)

I
4]

I

succeeds

Question 9.3 The predicate max/2 succeeds if the first argument is a list of numbers and
second argument unifies with the maximum value in that list.

e.g. ?- max([2,4,6,8],M).
M=38
yes

max/2 is defined as:

0. max([H|T],Max) :-
max(T,H,Max) .

1. max([HIT],Temp,Max) :-
H>Temp,

89

max (T,H,Max) .
2. max([H|T],Temp,Max) : -
max (T, Temp,Max) .
3. max([],Finalmax,Finalmax) .

9.3 Complete the AND/OR tree below which represents the execution of the query:

?- max([2,1,4,3],Ans).
|
0l H/2 T/[1,4,3]
|
max([1,4,3],2,Ans)

/ \
1/ 2\ H1/1 Temp/2 T1/[4,3]

/ \

1>2 max([4,3],2,Ans)
fails I\
11__\ H2/4 Templ/2 T2/[3]
I \

4>2

succeeds

Question 9.4 The predicate prlist/1 is supposed to write out the elements of a list struc-
ture, regardless of the levels of embedding that are present in the list.

e.g. intended behaviour:
?- prlist([a,b,[c,d,e]l,f,[g]l]).
abcdefg
yes

Instead, the predicate as defined below has the following behaviour:

?7- prlist([a,b]l).

ab[]

yes

?7- prlist([a,b, [c,d],el).
abcd[Je[]

yes

prlist/2 is defined as:

1. prlist([H|T]):-

90

prlist(H),

prlist(T).
2. prlist(X):-

write(X) .

Explain why this predicate produces this behaviour (instead of the intended behaviour),
using an AND/OR tree or a trace in your explanation.

Question 9.5 The predicate checkvowels takes a list representing a word, checks each
letter to see whether it is a vowel, and if it is it writes out the vowel.

checkvowels ([H|T]) : -
vowel (H) ,
write(H), nl,
checkvowels(T).

checkvowels ([HIT]) :-
checkvowels(T) .

checkvowels([]).

vowel(a).
vowel (e) .
vowel (i) .
vowel (o) .
vowel (u) .

e.g. ?- checkvowels([c,a,t,1]).
a
i
yes

9.5a Using this as a model, write a predicate results/1 that takes a list of names, checks

whether each is a pass (using a predicate that you also must define, pass/1) and writes out
the names if they pass.

For example, the following query:
?7- results([tom,bob,sue, jane]) .
should give the output:

bob
sue
yes

91

9.5b Modify this program so that instead of 'writing out’ the name of each person who passes
it should output a list of them. (You may need to read ahead to answer this part).

7- results2([tom,bob,sue, jane] ,Passlist).
Passlist = [bob,suel
yes

9.6 Practical 3: Basic List Processing
Introduction

Here are some exercises in list-processing, which is a very common technique in Prolog, and
one which you should try to get comfortable with. Since lists are defined recursively as a
head, followed by a tail, which is itself a list, predicates which process lists are typically
recursive, and in which you:

e Hit the base case when there’s no more of the list to process.

e Otherwise, do something with the head of the list, then recurse with the tail to do the
rest of the processing.

These exercises are not assessed, but you are expected to complete them. Your Prolog code
should be entered in the spaces provided. After you have tested the code on the computer
show it to the demonstrator and they will mark that section as complete.

1. Define two predicates, evenlength/1 and oddlength/1, which take a list as their
argument, and succeed if that list has an even length and an odd length respectively.
For example:

| ?- evenlength([1,2,3,4]).
yes

| ?- oddlength([1]).
yes

2. Define a predicate palindrome/1 which succeeds if its single argument is a list which
is the same in the forward and backward directions. For example:

| ?- palindrome([r,e,d,i,v,i,d,e,r]).
yes

92

3. Define a predicate flatten/2, whose first argument is a list of any complexity, and
which succeeds by instantiating its second argument to a ‘flattened’ version of the list,
which contains the contents of all of the embedded lists. For example:

| ?- flatten([a, [[bl], [0, [d, elll, X).

4. Define a predicate count_atoms/2, which accepts a list containing atoms, numbers
and/or such lists, and ‘returns’ a list containing terms of the form Item=Count to show
how many times an Item appears in any embedded list. For example:

| ?- count_atoms([a, b, b, [[al, [c], bl]l, L).

Note that the order of the count terms in the result doesn’t matter; any order will do.

5. Define a predicate replace_elements/4, which replaces all occurrences of a given
element in a list by another, and instantiates a given variable to the answer. The
arguments should be, in order:

a) the element to be replaced;

(a)
(b) the element to replace it with;
(c) the list to do the replacing in;

(d) a variable to be instantiated to the final list.

(The predicate needn’t bother to delve inside lists within lists.) For example:

| ?- replace_elements(pronoun(he),pronoun(we),
[pronoun(he) ,verb(said) ,pronoun(he) ,verb(did)], L).

L=[pronoun(we), verb(said), pronoun(we), verb(did)]
yes

6. Define a predicate unifiable/3(List, Term, Answer), where Answer is to be instan-
tiated to all those terms in List which could unify with Term. Make sure that they
are not actually unified, though. For example:

| ?- unifiable([X, b, t(Y)], t(a), L).

should give the answer:

L = [X, t(V)]
and not:
L = [t(a), t(a)]

(Hint: consider the behaviour of \+(Element=Term) carefully).

94

10 Further list processing predicates

10.1 Changing one sentence into another: the predicate alter/2

Suppose you want to write a simple predicate that enables you to alter an input sentence to
get a new output sentence (Eliza style). An example of the sort of dialogue produced might
be:

You: you are a computer
Prolog: i am not a computer

You: do you speak french
Prolog: no i speak german

How do we go about this? First we break the task down into steps.

1. Accept the sentence typed in;

2. If there are any you’s change them to #’s
3. and change are to am not

4. and change french to german

5. and change do to no

[this may lead to some obvious problems in other examples, but we will ignore those for now]

The predicate we will use will be called alter/2. It will need two arguments, both of which
will be lists.

An example goal might be:

| ?- alter([do,you,know,french],Rep).

Rep=[no,i,know,german]
How is alter/2 defined? Think of cases to be dealt with:

e the list to be altered

e the empty list
Take the latter:

Alter the empty list to the empty list

alter([1,[1).

95

This will give us the boundary condition and will stop the recursion.

What about the rest of the list to be altered?

e change one word at a time (or leave it if not to be changed)

e build a new list of changed and unchanged words (=reply)

We do this by changing the head of the list and then recursing on the tail, building a new
list as we go and stopping when we run out of list.

1. e Change the head of the input list (represented by the first argument) into another
word and

e let the head of the output list be the same as that word (by matching)

2. e Alter the tail of the input list and
e let the tail of the output list be the same as the altered tail

3. If the end of the input list is reached then there is no more to do.

We now have to deal with changing one word into another. We will define a predicate
change/2 that will take two arguments: the element to be changed, and the element that it
is to be changed to:

change(you,i).
change (are, [am,not]) .
change (french,german) .

change (X,X) .

As these are all single list elements, any replacement of more than one word will have to be
a sub-list. Note the catchall in the last clause of change/2. This will take care of all the
words that we don’t want changed.

So, the two clauses that make up the predicate alter/2 are:

1: alter([1,[1).

2: alter ([HIT], [X|Y]):-
change (H,X),
alter(T,Y).

If we now put the whole program together with predicates for changing and altering we get
the following:

1: alter ([1,[1).

96

| ?- trace,alter([i,like,your,shirt],P).
{The debugger will first creep -- showing everything (trace)}
1 1 Call: alter([i,like,your,shirt],_99) 7
2 2 Call: change(i,_237) 7
2 2 Exit: change(i,you) 7
3 2 Call: alter([like,your,shirt],_238) ?
4 3 Call: change(like,_505) ?
4 3 Exit: change(like,like) 7
5 3 Call: alter([your,shirt],_506) 7
6 4 Call: change(your,_772) 7
6 4 Exit: change(your,my) ?
7 4 Call: alter([shirt],_773) 7
8 5 Call: change(shirt,_1038) 7
8 b5 Exit: change(shirt,shirt) 7
9 5 Call: alter([],_1039) 7
9 5 Exit: alter([1,[1) 7
7 4 Exit: alter([shirt],[shirt]) ?
5 3 Exit: alter([your,shirt], [my,shirt]) ?
3 2 Exit: alter([like,your,shirt],[like,my,shirt]) ?
1 1 Exit: alter([i,like,your,shirt], [you,like,my,shirt]) ?

P = [you,like,my,shirt] ?
yes

(the trace is indented for additional clarity)

Figure 24: Tracing the behaviour of the predicate alter/2

2: alter ([HIT], [X|Y]):-
change(H,X),
alter(T,Y).

change (i,you).
change (me, you) .
change (your,my) .
change (their,our).

change (X,X) .

AN

An example trace of the program is given below in Figure 24.

We now will consider a few more examples of list processing predicates, looking at some of
the general techniques used in them.

97

10.2 Deleting the first occurrence of an element from a list: the
predicate delete/2

What do we mean? The predicate delete/3 will need 3 arguments:

e the element E to be deleted
e the list L from which it is to be deleted

e the new list Newl which has the item deleted
We assume we know the first 2 and want to build the third, so the goal might be:
?- delete(a,[c,a,m,e,1],Ans).
So we would expect the result:

Ans=[c,m,e,1]
Yes

What do we do? We want to look at each element of the list L in turn to see if it is the
element to be deleted, so need to access the head of L recursively (as in member/2). This
means breaking L into a Head HL and a tail TL (using matching). We want to process the
whole list and to build a new list at the same time.

The two cases we need to consider are:

1. when the head of the list that we are looking at is the one we want to delete

2. when it is not
In the first case we then need to save the rest of the list:
deleting the element E from the list with head E and tail TL will give the list TL
In prolog:
delete(E, [E|TL],TL).

In the second case we need to save the head as well as the rest of the list (we don’t want to
delete all the other elements):

deleting the element E from the list with head HL and tail TL will give the list
with head HL and tail NL if deleting E from the list TL gives the list NL

delete(E, [HL|TL], [HL|NL]) : -
delete(E,TL,NL).

98

| ?- trace,delete(a, [c,a,p],Nlist).
| ?- delete(a,[c,a,p],Nlist).
1 1 Call: delete(a,[c,a,p],_100) ?
2 2 (Call: delete(a,[a,p]l,_241) 7
2 2 Exit: delete(a,[a,pl,[pl) ?
1 1 Exit: delete(a,[c,a,pl,[c,pl) ?

Nlist = [c,p] 7

yes

Figure 25: Tracing the behaviour of the predicate delete/3

So, the complete program is:

delete(E, [E|TL],TL).

delete(E, [HL|TL], [HL|NL]) :-
delete(E,TL,NL).

And example goals would be:

| ?7- delete(a,[c,a,p],Nlist).

Nlist=[c,p]
yes

| ?- delete(e,[f,e,e,d],Ans).

Ans=[f,e,d]
yes

An example trace of this is shown in Figure 25.

Note: we can use this also to help build a predicate for deleting ALL the elements E in the
list L - consider what changes we need to the first clause......

10.3 Reversing a list: the predicates rev/2 and rev/3

We are going to write a predicate to reverse a list here. The predicate will be rev/3. For
convenience it can be called by a simpler predicate rev/2.

| ?- listing(rev).

99

| ?- rev([a,b,c],Revl).
1 1 Call: rev([a,b,c],_86) 7
2 2 Call: rev([a,b,c],[]1,_86) 7
3 3 Call: rev([b,c],[al,_86) 7
4 4 Call: rev([c],[b,a]l,_86) 7
5 5 Call: rev([],[c,b,a]l,_86) 7
5 5 Exit: rev([],[c,b,al,[c,b,al) 7
4 4 Exit: rev([c],[b,al,[c,b,a]) ?
3 3 Exit: rev([b,c],[al,[c,b,al) ?
2 2 Exit: rev([a,b,c],[],[c,b,al) ?
1 1 Exit: rev([a,b,c],[c,b,al) ?

Revl = [c,b,a] ?

yes
Figure 26: Tracing the behaviour of the predicate rev/3
1: rev(L,Revl) :-
rev(L, [],Revl).
1: rev([],L,L).
2: rev([H|List] ,Acc,Revl) :-

rev(List, [H|Acc]l,Revl).

We 'pour’ each element into the accumulator one at a time, so that the new list builds up
with each successive head at the front (and the first head being in first is now last).

When all are 'poured in” we copy the accumulator list across to the answer.

An example trace of rev/3 is shown in Figure 26.

10.4 Joining two lists together: the predicates append/3

The predicate append/3 enables us to join two lists together into one list.

| ?- listing(append) .

1: append([],L,L).
2: append ([H|L] ,M, [H|N]) :-
append (L,M,N).

1. The list L is the same as the list L appended to the empty list.

100

| ?- append([a], [b],Newl).
1 1 Call: append([al,[bl,_88) ?
2 2 Call: append([],[bl,_224) 7
2 2 Exit: append([],[bl,[b]) ?
1 1 Exit: append([al,[b],[a,b]) ?

Newl=[a,b]
yes

Figure 27: Tracing the behaviour of the predicate append/3

| ?- append([1,2],[3,4],X).
1 1 Call: append([1,2],[3,4]1,_128) 7
2 2 Call: append([2],[3,4],_264) 7
3 3 Call: append([]1,[3,4]1,_363) 7
3 3 Exit: append([],[3,4],[3,4]) ?
2 2 Exit: append([2],[3,4]1,[2,3,4]) ?
1 1 Exit: append([1,2],[3,4]1,[1,2,3,4]) ?

X=[1,2,3,4]
yes

Figure 28: A further example of the behaviour of the predicate append/3

2. The list with head H and tail N is the same as the list with head H and tail L. appended
to the list M if the list N is the list L appended to the list M.

An example trace of append/3 is shown in Figure 27.
A further trace of append/3 using a different goal is shown in Figure 28.

An example trace of using append/3 with different instantiation patterns in the goal is shown
in Figure 29.

What about
7- append(F, [3,41,[1,2,3,4]).
F=[1,2]
yes
10.5 Exercises

Question 10.1 The predicate delete/3 succeeds if deleting the element represented by the
first argument, from the list represented by the second argument, results in a list represented

101

| 7- append([1,21,R,[1,2,3,4]).
1 1 Call: append([1,2],_96,[1,2,3,4]) ?
2 2 (Call: append([2],_96,[2,3,4]1) 7
3 3 Call: append([],_96,[3,4]) ?
3 3 Exit: append([],[3,4]1,[3,4]1) 7
2 2 Exit: append([2],[3,4],[2,3,4]) 7
1 1 Exit: append([1,2],[3,4],[1,2,3,4]) 7

R=[3,4]
yes

Figure 29: A trace of a different calling pattern of the predicate append/3

by the third argument.

e.g. ?7- delete(a, [a,p,p,1l,e]l,A).
A=[p,p,1,el
yes
delete/3 is defined as:
1. delete(E1l,[E1IT],T).

2. delete(E1l, [HIT], [HINT]):-
delete(E1,T,NT).

For each of the following:

e specify whether the query submitted to Prolog succeeds or fails;
e if it succeeds, specify what is assigned to any variables.

10.1a ?- delete(X, [pat,john,paul] ,Ans).

10.1b ?- delete(A,L,[t,0,pl).

10.1c ?- delete(a,[c,a,b],Ans).

10.1d ?7- delete(e,[d,0,gl,P).

10.1e ?- delete(e, [f,e,e,t],Ans).

Question 10.2 The predicate deleteall /3 succeeds if deleting all occurrences of the element
represented by the first argument from the list represented by the second argument results
in a list represented by the third argument.

102

e.g. ?7- delete(p,[a,p,p,1,el,A). A=[a,1,e] yes
deleteall/3 is defined as: 1. deleteall(E1l,[1,[1).
2. deleteall(El, [E1|T],NT):-
deleteall(E1l,T,NT).

3. deleteall(El1l, [HIT], [HINT]):-
deleteall(E1l,T,NT).

For each of the following:

e specify whether the query submitted to Prolog succeeds or fails;

e if it succeeds, specify what is assigned to any variables.

10.2a 7?7- deleteall(e,[f,e,e,t],Ans).

10.2b 7?- deleteall(p,[d,o,gl,X).

10.2¢ Complete the AND/OR tree below which represents the execution of the query:

?- deleteall(e,[f,e,e,t],Ans).

/ | \
1/ |2 3 \ Ans/[fINT]
/ | \
[1=[f,e,e,t] e=f deleteall(e, [e,e,t],NT)
fails fails / \
/ \
1/ 2\ NT/NT2
/ \
[1=[e,e,t] deleteall(e, [e,t],NT2)
fails

10.2d Suppose that the predicate deleteall /3 is defined incorrectly as:

1. delall(g,[1,01).

2. delall(E, [EIT],Y):-
delall(E,T,Y).

3. delall(E, [HIT],Y):-
delall(E,T,[H|Y]).

resulting in the behaviour:

i. 7?- delall(e,[f,e,e,t],Ans).
no

However, the following query succeeds, as intended:

103

ii. ?- delall(a,[a,a,al,Ans).
Ans=[]
yes

Explain why the program does not give the intended answer to query i. using an AND/OR
tree or a trace to illustrate your answer.

Question 10.3 The predicate repall/4 succeeds if replacing all occurrences of the element
represented by the first argument, by the element represented by the second argument, in the
list represented by the third argument, results in a list represented by the fourth argument.

e.g. ?7- repall(p,b,[a,p,p,1l,el,A).
A=[a,b,b,1,e]
yes

repall/4 is defined as:

1. repall(El,Rel,[1,[1).

2. repall(El,Rel, [E1|T], [Rel|NT]):-
repall (E1,Rel,T,NT).

3. repall(El,Rel, [H|T], [HINT]):-
repall(E1,Rel,T,NT).

For each of the following:
e specify whether the query submitted to Prolog succeeds or fails;
e if it succeeds, specify what is assigned to any variables.

10.3a ?7- repall(e,a,[f,e,a,t],Ans).

10.3b ?- repall(P,r,[s,o,u,pl,Ans).

Question 10.4 The predicate whowants/3 has three arguments. The first is intended to
represent a type of food; the second a list of people; and the third another list, representing
those people on the 2nd argument list who want the type of food specifed in the 1st argument
(where want/2 is defined separately, with two arguments representing who wants what food).

e.g. ?7- whowants(beans, [jo,tom,ann],Who) .
Who = [jo,ann]
yes

1. whowants(Food, [Name|Rest], [Name|Others]) :-
wants (Name,Food),
whowants (Food,Rest ,0thers) .

104

2. whowants(Food, [Name|Rest] ,0thers) : -
whowants (Food,Rest,Others) .
3. whowants(Food, [1,[1).

. wants(jo,chips).

. wants(jo,beans) .

. wants(jo,eggs) .

. wants(ann,beans) .

. wants(ann,bacon) .

. wants(tom,eggs) .
10. wants(tom,chips).
11. wants(rick,bacon).

©O© 00 N O O

10.4a Give either the AND/OR tree or a trace which represents the execution of the query:
?7- whowants(beans, [jo,tom,ann],Who) .
For each of the following:

e specify whether the query submitted to Prolog succeeds or fails;

e if it succeeds, specify what is assigned to any variables.

10.4b ?- whowants(chips, [ann,rick],Ans).
10.4c ?- whowants(bacon, [tom,ann] ,A).

10.4d ?7- whowants(eggs,Diners,Ans).

10.4e Using whowants/3 as a model, write a predicate overage/3 that takes an age limit
and a list of names, checks the age of each person named (using a predicate age/2) and
returns a list of names of those people who are over the age limit.

For example, the query below should give the output shown:

7- overage(18,[sally,alice,bill],Ans).
Ans=[alice,billl]
yes
where:
age(sally,15).
age (mark,26) .
age(bill,20).
age(alice,37).

10.4f If the predicate whowants/3 had been (incorrectly) defined as:

105

1. whowants(Food, [Name|Rest], [Name|Others]) : -
wants (Name,Food) ,
whowants (Food,Rest,0Others) .

2. whowants(Food, [Name|Rest] ,0thers) :-
whowants (Food,Rest ,0thers) .

(i.e. no 3rd clause) predict the outcome of the query in 4c.
?- whowants(bacon, [tom,ann] ,A).

and explain why this is the case, using an AND/OR tree or a trace in your explanation.

Question 10.5 The predicate deletefirst/3 is supposed to succeed if deleting the element
represented by the first argument, from the list represented by the second argument, results
in a list represented by the third argument, as delete/3 defined as above (B.)

e.g. intended behaviour:
?- deletefirst(i,[b,i,b,s],A).
A=[b,b,s]
yes

Instead, it produces the following behaviour:
?- deletefirst(i,[b,i,b,s],A).
A=[s]
yes

?- deletefirst(a,[b,a,1,1],X).
no

deletefirst/3 is defined as:
1. deletefirst(E1l, [E1|T],T).

2. deletefirst(El, [H|T],NT):-
deletefirst(E1l, T, [HINT]).

Explain why this predicate produces this behaviour (instead of the intended behaviour),
using an AND/OR tree or a trace in your explanation.

10.6 Practical 4: More list processing
In this practical we will start off decomposing and constructing terms using arithmetic

operators in a similar way to manipulating lists. To complete this practical you will first
need some tips.

106

Terms can be constructed from individual constants or variables by joining them together
using any arithmetic operator or alphanumeric character. They can then be instantiated to
a variable using =/2. If is/2 is used then the variable will instantiate to the result of the
arithmetic sum.

?7- X=5,Y=6,Z = X+Y.

N < b —
|
o O O1

<
[0]
4]

?7- X=5,Y=6,Z is X+Y.

|

X =05,
Y =26,
Z =11
yes

Terms can also be decomposed using arithmetic operators.

?- X = pro+log, Z+Y = X.

I

X = pro+log,

Y = log,

Z = pro 7

yes

| ?- X = protlogtged, Z+Y = X.
X = pro+log+ged,

Y = ged,

Z = pro+log 7

yes

However, it is important to note that the binding preference of arithmetic operators is
different to the list deconstructor ’|’. The list deconstructor searches from the far left of a
list first, designating the first argument it finds as the head and the rest the tail. Arithmetic
operators work in reverse, matching the right-most instance of the operator and using that
to split the term. An example of this can be seen in the second example above.

10.6.1 Part 1: List and term processing
1. Write a predicate, 1list_to_term/2, which takes as its first argument a non-empty list

of numbers and returns as its second argument a term composed of the numbers in the
list joined by ’+’ operators. An example of the behaviour of this predicate is:

| ?- list_to_term([1,2,3,4], X).
X = 1+(2+(3+4)) 7

107

yes
| ?7- list_to_term([9,9,9], X).

X = 9+4(9+9) 7
yes
| ?- list_to_term([44], X).

X =447
yes

(Hint: careful choice of the base case will make things easier.)

2. Write a predicate inv/2 which takes as its first argument a term composed from ’+’
operators, -’ and numbers and returns as its second argument the same term but
with the ’+’ changed ’-’ and the -’ changed to to ’+’. An example of the behaviour
of the program is:

| ?- inv(1+2+3,X).
X =1-2-3
yes

| ?7- inv(1+(2-3)+4,X).
X = 1-(2+3)-4
yes

3. Write a predicate numset/2, which takes as its first argument a term composed from
>+’ operators and numbers, and returns as its second argument a list containing the
set of numbers appearing in the term. The order in which the numbers appear in the
list is not important. An example of the behaviour of this program is:

108

| ?7- numset(1+2+3+2,X).
X = [3,2,1]
yes

| ?- numset(1+(2+(1+2)),X).
X = [2,1]
yes

In answering this question you will probably need to use the standard member/2 pred-
icate:

member (X, [X]_]).
member (X, [_|T]) :-
member (X,T) .

10.6.2 Part 2: The Sticks Problem

The following puzzle requires complex list manipulation and rudimentary search (first pro-
posed by John Hallam).

The Sticks Problem: There are 8 sticks lined up in a row (as shown below). The goal
is to move exactly four sticks and end up with four groups of crossed sticks. Each move
consists of picking up a stick, jumping over exactly two sticks, and then putting it down
onto a fourth stick.

Start state:

NN
abcdefgh

Goal state:

XX XX

(position of the pairs is unimportant)

From start state, stick ’a’ can be moved onto stick ’d’:
(I T I I

abcdefgh

And then stick ’c’ could be moved onto ’e’:

109

I xx | ||
abcdefgh

We can think of this problem as a State-Space Search problem as from every state there
are a number of possible moves that may, or may not lead us to the goal state.

1. Using the list notation choose a representation for the states in this problem. Use your
representation to show the start state and goal state:

Start state:
Goal state:

2. Each move consists of picking up a stick, jumping over exactly two sticks, and then
putting it down onto a fourth stick. How many different ways can this rule by applied?
Specify an operator for each of these moves, stating the required starting state of the
problem space and the result of making the move.

State the operators in pseudo-code first:

3. Look at the operators you have just specified. Do you need all of them? Can general
operators be specified that can apply in more than one situation? Modify the above
specification to reflect this.

4. Download the sticks.pl file from the course website. Open it in a text editor (e.g.
Emacs) and try to figure out how it works. Ask the demonstrators if you have an
difficulties.

5. The sticks program uses two different search strategies to find a solution. If the
program is called using sticks([i,i,i,i,i,i,1i,i],breadth) then a breadth-first
search is performed. If it is called using sticks([i,i,i,i,i,i,i,i],depth) then a
depth first is performed. The difference in terms of how it searches the problem space
is large but the difference between how the two strategies are implemented in Prolog
is very small. Look at the code and see if you can figure out how the two strategies
differ and what effect it has?

110

6. sticks.pl is currently missing the three predicates that allow it to make the actual
moves. See if you can add these new predicates to the file and get the program to solve
the search problem. Use the pseudo-code operators you have previously specified.

111

11 How Programs Work

11.1 Tracing

We can follow through the execution of a goal in Prolog by tracing it. The trace will show:

e which goal is currently being called, with what arguments;

e whether the goal succeeds or has to be redone (i.e., whether another match has to be
looked for);

e whether the goal fails; and

o if the goal succeeds, whether other clauses might also match.
For example, given the predicate no_cons/2, the goal:
| ?- no_cons([a,e,0]).

can be traced by calling the conjunction of the goal trace and the goal itself; the code for
no_cons/2 and the results of tracing are shown in Figure 30.

Similarly we can trace the goal:
| ?- trace, max([7,3,9,2,6], Max).

giving the code and output as shown in Figure 31.

Some things to note here:

1. The number to the left of the goal indicates the level in the tree from which the goal
is being called (the top level goal being 0). This makes it easier to see which goals are
subgoals of the same clause, and also which are recursive goals.

2. The leftmost number is the number of the goal that is being called: each new goal that
is created is given a number which is incremented for the next new goal. This makes
it easier to see exactly which goal is being called, being redone, failing, or succeeding.

11.2 The Byrd Box Model of Execution

The model on which the tracing is based is known as the 'Byrd Box model of Execution’.

A program trace:

| ?- listing(parent).

parent(a, b).
parent(c, d).

112

no_cons([]1).

no_cons([H|T]) :-
vowel(H),
no_cons(T) .

| ?- trace, no_cons([a,e,o0]).
{The debugger will first creep -- showing everything (trace)}

1 1
2 2
2 2
3 2
4 3
4 3
5 3
6 4
6 4
7 4
7 4
5 3
3 2
1 1
yes
{trace}
| 7-

Call:
Call:
Exit:
Call:
Call:
Exit:
Call:
Call:
Exit:
Call:
Exit:
Exit:
Exit:
Exit:

no_cons([a,e,0]) ?
vowel(a) 7
vowel(a) 7
no_cons([e,0]) ?
vowel(e) 7
vowel(e) 7
no_cons([o]) 7
vowel(o) 7
vowel(o) 7
no_cons([]) ?
no_cons([]) ?
no_cons([o]) 7
no_cons([e,0]) ?
no_cons([a,e,0]) ?

Figure 30: Tracing the behaviour of the predicate no_cons

113

max([H|T], Answer):-
max (T, H, Answer).

max([], Answer, Answer).
max ([HIT], Temp, Answer):-
H > Temp,
max (T, H, Answer).
max ([H|T], Temp, Answer):-
max (T, Temp, Answer).

| ?- trace, max([7,3,9,2,6], Max).

{The debugger will first creep -- showing everything (trace)}
1 1 Call: max([7,3,9,2,6],_112) 7

Call: max([3,9,2,6],7,_112) 7

Call: 3>7 7

Fail: 3>7 7

Call: max([9,2,6],7,_112) ?

Call: 9>7 7

Exit: 957 7

Call: max([2,6],9,_112) 7

Call: 2>9 7

Fail: 2>9 7

Call: max([6],9,_112) ?

Call: 6>9 7

Fail: 6>9 7

Call: max([],9,_112) ?

Exit: max([],9,9) 7

Exit: max([6],9,9) 7

Exit: max([2,6],9,9) 7

Exit: max([9,2,6],7,9) 7

Exit: max([3,9,2,6],7,9) 7

Exit: max([7,3,9,2,6]1,9) 7

N WO NNNNOODOOO O W wwN
N WP oo O oo DWW WwN

Max = 9 7
yes
{trace}

| 7-

Figure 31: Tracing the behaviour of max

114

yes

| ?- trace, parent(X,Y), X = f.
{The debugger will first creep
-- showing everything (trace)}

1 1 Call: parent(_44,_58) 7
Exit: parent(a,b) ?
Call: a=f 7
Fail: a=f 7
Redo: parent(a,b) ?
Exit: parent(c,d) ?
Call: c=f 7
Fail: c=f 7
Redo: parent(c,d) 7
Fail: parent(_44,_58) 7

P P NNNRFP, R NNP-
e e

no
{trace}

| 7-
e Each box represents one invocation of a procedure.
e Use nested boxes for the bodies of rules.
e Each box has four ports:

Call: used first time we look for a solution
Exit: used if the procedure succeeds
Redo: used when backtracking

Fail: used if we can’t satisfy the goal

Call Exit Call Exit

parent(a,b).
parent(c,d).

Fail Redo Fail Redo

Not all systems provide tracers that use all four ports, i.e. some tracers do not explicitly use
the ’redo’ port, but use 'call’ again when backtracking.

115

11.3 Debugging using the Tracer

spy(predicate_name) Mark any clause with the given predicate_name as “ spyable”. Does
not work for built-in predicates; can take a list of predicates as argument.

debug If a spied predicate is encountered, switch on the tracer.

nodebug Remove all spypoints. The tracer will therefore not be invoked.

nospy (predicate_name) Undo the effect of spy—i.e. remove the spy point.
debugging Shows which predicates are marked for spying plus some other information.
trace Switches on the tracer.

notrace Switches the tracer off. Does not remove spypoints.

Debugging options:

<cr> creep c creep

1 leap s skip

r retry r <i> retry i

d display p print

W write

g ancestors g <n> ancestors n
n nodebug = debugging

+ spy this - nospy this
a abort b break

© command u unify

< reset printdepth < <n> set printdepth
h reset subterm " <n> set subterm
? help h help

Useful Debugging Options:

creep: This is the single stepping command. Use (RETURN) to creep. The tracer will move
on to the next port.

skip: This moves from the CALL or REDO ports to the EXIT or FAIL ports. If one of the
subgoals has a spypoint then the tracer will ignore it.

leap: Go from the current port to the next port of a spied predicate.
Tracing in SICStus Prolog, given the following program:

son(A, B) :-
parent (B, A),
male(A).
daughter(A, B) :-

116

parent (B, A),
female(A).

parent(A, B) :-
father (A, B).

parent(A, B) :-
mother(A, B).

male(tom) .
male(jim) .
male(cecil).
male(fred).

female (mary) .
female(jane) .
female(sue) .

father(tom, jim).
father(tom, sue).
father(fred, cecil).

mother (mary, tom).
mother (mary, jane).
mother (mary, fred).

| ?- trace,daughter(X,Y).
{The debugger will first creep -- showing everything (trace)}
1 1 Call: daughter(_51,_67) 7
2 2 Call: parent(_67,_51) ? s
2 2 Exit: parent(tom,jim) ?
4 2 Call: female(jim) ? g
Ancestors:
1 1 daughter(jim,tom)
Call: female(jim) ?
Fail: female(jim) ?
Redo: parent(tom,jim) 7 s
Exit: parent(tom,sue) ?
4 2 Call: female(sue) 7 g
Ancestors:
1 1 daughter(sue,tom)
4 2 Call: female(sue) ? s
4 2 Exit: female(sue) 7
1 1 Exit: daughter(sue,tom) ?

N N DD
NN NN

X = sue,
Y = tom 7
yes

117

{trace}
| 7-

We have ’skipped’ each time that we called parent/2 so we do not see whether it is satisfied
by using the father/2 or mother/2 rule: we only see the outcome of the subgoal. We have
also asked to see the ancestors of the subgoal female(jim) i.e. what it was the immediate
subgoal of.

We might choose to trace a particular predicate such as father/2 by placing a spy point on
it. Whenever we ’leap’ in the tracing thereafter, the tracer will jump to the next call to this
goal.

| ?- spy(father).
{Spypoint placed on user:father/2}
{The debugger will first leap -- showing spypoints (debug)}

yes
{debug}
| ?- daughter(X,Y).

+ 3 3 Call: father(_81,_65) ?
+ 3 3 Exit: father(tom,jim) ?
2 2 Exit: parent(tom,jim) ?
4 2 Call: female(jim) ? s
4 2 Fail: female(jim) ?
2 2 Redo: parent(tom,jim) 7 1
+ 3 3 Redo: father(tom,jim) ?
+ 3 3 Exit: father(tom,sue) 7
2 2 Exit: parent(tom,sue) 7
4 2 Call: female(sue) 7 1
X = sue,
Y = tom ?
yes
{debug}

11.4 Loading Files

Consult or [| can be used for loading files into the prolog interpreter. If the filename has
punctuation characters in it, remember to enclose it in single quotes. More than one file
may be consulted at once.

e | ?- consult(parents).
{consulting parents...}

{parents consulted, 10 msec 287 bytes}

yes
| 7=

118

e | 7- [parents].

e | ?- consult(’/u/ai/s2/ai2/aifoo/program’).
e | ?- consult(’foo.pl’).

e | ?7- consult([foo,baz,’foobaz.pl’]).

e | ?7- [foo,baz].

Avoid splitting predicate definitions between files. For example, if you define part of your
family program in one file and part in another (perhaps you decided to put different families
in different files?) the following may happen:

| ?- consult(filel).
{consulting filel...}
{filel consulted, 10 msec 287 bytes}

yes
| ?- consult(file2).
{consulting file2...}
The procedure parent/2 is being redefined.
0ld file: filel
New file: file2
Do you really want to redefine it? (y, n, p, or 7) ?

y redefine this procedure

n don’t redefine this procedure

) redefine this procedure and don’t ask again
?

print this information

(y, n, p, or ?)

Files can also be consulted from inside another program file by writing either of the normal
consult commands preceded by ’?-’ somewhere in the main file. Everytime the main pro-
gram file is consulted it will also consult the other files. This saves you having to consult
them all by hand.

11.5 Some common mistakes
1. | ?- member(a, [a,b,c).

¥ | or] expected in list *x
member (a , [a , b, c

*% here *xx

)

Leaving off the closing list bracket causes a syntax error.

119

2. | ?- parent(a,b) X = f.

*x variable follows expression *x*
parent (a , b)

**x here *x

X=1f

Subgoals must be separated by commas.

3. | ?- parent(a b),X = f.

**x atom follows expression *x
parent (a

**x here **

b)), X=1f.

Arguments must also be seperated by commas.
4. | 7- parent(a, b, X = £f.

** , or) expected in arguments *x
parent (a , b, X =f

** here **

Closing predicate bracket omitted.

5. | ?- parent (a,b).

*x bracket follows expression **

parent
** here *x
(a,b)
| ?-

Extra space between the predicate name and the opening bracket.
11.6 Summary

You should be able to:

e model the behaviour of Prolog programs using the Byrd Box Model
e be able to use the basic functionality of Prolog’s debugging tools

e be able to identify common mistakes in typing Prolog queries

120

12 Al Applications of Prolog: State-Space Search

The rest of this document will sketch out a range of Al applications that Prolog is well suited
for:

State-space Search

Definite Clause Grammars

Morphological Processing
e Chat-Bot: Eliza

e Planning

These sections will place more emphasis on the practical aspects than the theory. The theory
will be provided in the lectures. References will also be made to appropriate sections in the
recommended text books. However, only material contained within this document, presented
in the lectures, or used in the assignments is examinable.

12.1 The Missionaries and Cannibals Problem
Given the following ...

e Three missionaries and three cannibals are trying to cross a river: they want to get
from the left bank to the right bank.

e There is one boat, which can take two people at most.

e If the cannibals outnumber the missionaries on a bank, then the missionaries get eaten.
We’ll assume that the boat being at a bank counts as it being on the bank.

...we want to find the schedule of crossings that will get all six across safely.
The Missionaries and Cannibals problem is a classic AI example of a State-Space Search

problem.

e States are a simplified representation of the problem-world at a single point in time.

e The State-Space is the configuration of the possible states and how they connect to
each other (i.e. the legal moves between states)

The state-space is best represented as a tree which grows down from the start state. Each
branch on the tree denotes a transition from one state to another. To solve a state-space
problem we need to search through the tree of possible states to find a path from our start
state to the goal state.

From every problem state there may be multiple possible transitions, the number of transi-
tions (know as the branching factor) increasing with problem complexity. It is the job of
a search strategy to manage these possible transitions and choose the next one to pursue.

121

In the Missionaries and Cannibals problem there are a very small number of possible tran-
sitions so the search problem isn’t too complex. However, even a small search problem like
this can be made more efficient by correctly choosing the right search strategy.

For the theory behind search strategies see the lecture slides or Bratko Chapters 11 and
12. Further information on Al search strategies can be found in Artificial Intelligence: A
Modern Approach by Russel and Norvig.

We’ll now use the Missionaries and Cannibals problem to demonstrate the top-down design
of a problem solution in Prolog.

12.2 Viewing the Problem as State Space Search

In abstract terms:

e We can represent the states as follows:

Initial State |MMMCCCB|—

Goal State | —|MMMCCCB

e We can represent the possible moves as follows:

M—| < M
MM — | < MM
MC — | < MC
CC — | < CC
C— |+ C

A strategy for solving the problem, given a current state:

e Try each move in turn.

— Check if it is a safe move to make.

— If it is not, try another move.

e If there are no more moves to try, go back to where we had a choice of moves and try
again.

e Once we’ve made a move, check to see if we are at the goal state; if not, repeat the
process.
12.3 Practical 5: Missionaries and Cannibals in Prolog

(Read the beginning of this chapter before undertaking this practical.)

In this practical you will work through a solution to the Missionaries and Cannibals search
problem. A partial version of the program needed to solve this problem is provided:

122

Download the file mandc.pl from the course website into your home directory.
Load mandc.pl in Emacs.
We will work through the code explaining each predicate.

If, at any time, you don’t understand the explanation call over a demonstrator.

A

Your task will be to complete and modify certain sections.

12.3.1 A walk through the program

To implement a prolog program that solves the M&C problem we have to:

—

. Choose a representation.

2. Decide on the algorithm to be used.

3. Choose predicates to represent each step.
4

. Work out the detail in a top-down fashion.

Choosing a Representation: How will we represent the situation on each side of the
river?

Some possibilities:
e Use a list of the entities that are on that side of the river:
[m,m,m,c,c,c,b]
e Use separate terms for each type of entity:

missionaries(3)
cannibals (3)

e Use one term with three arguments:
leftside(3,3,1)
e Use a list with three elements:
[3,3,1]
where

— missionaries = {0,1,2,3}
— cannibals = {0,1,2,3}
— boat = {0,1}

We’ll use the last of these; so:

Initial state: Left = [3,3,1]
Right = [0,0,0]
Goal state: Left = [0,0,0]
Right = [3,3,1]

123

12.3.2 Problem Solution

The general idea is to make moves from one bank to the other until we reach the goal state.

To make a move from one bank to the other:

1. Make a move and get the new states of the banks.

2. Check if the new states of the banks are safe (i.e., make sure the missionaries won'’t
get eaten); if they are not, repeat Step 1 for a different move.

3. Repeat the entire process until we reach the goal state.

We have to choose some predicates to represent these steps, then work top-down.

The Top Level Predicate: The main predicate gofrom/2:

e make a move and get the new states of the banks

o if safe(Left) and safe(Right) then gofrom the new states.
In Prolog:

gofrom(Left, Right):-
applymove (Left,Right,NewLeft,NewRight),
safe (NewLeft),
safe (NewRight) ,
gofrom(NewLeft, NewRight) .

We need to check if the goal state has been reached:
gofrom([0,0,0],[3,3,1]).

Remember we have to put this before the recursive gofrom/2 clause.

Applying a Move The predicate applymove/4 gives us new states of the two banks by
applying a move.

e If the boat is already on the left bank, the pattern when called will be:
applymove([M1,C1,1], [M2,C2,0], ...)
e If the boat is on the right, the pattern will be:

applymove([M1,C1,0], [M2,C2,1], ...)

To save having to do two sets of clauses, one for each side, we can check which side the boat
is on then apply the same operator:

124

e If the boat is on the left:

applymove (Left, Right, ’-->’, Comment, NewLeft, NewRight):-
boathere (Left),
moveload(Left, Right, Comment, NewLeft, NewRight).

e If the boat is on the right:

applymove (Left, Right, ’<--’, Comment, NewLeft, NewRight):-
boathere(Right),
moveload (Right, Left, Comment, NewRight, NewLeft).

This uses the same boathere/1 and moveload/5. boathere/1 is defined very simply:
boathere([M,C,1]).

The arrow is a string which will be used later to denote in which direction the move occurs.

Moving a Load Now we need to define the predicate moveload/5.

The algorithm:

e select a move (move/2)
e check if it is possible (possibletomove/2)

e make the move (performmove/5)
So:

moveload(Source, Target, Comment, NewSource, NewTarget):-
move (BoatLoad, Comment),
possibletomove (Source, BoatLoad),
performthemove (Source, Target,BoatLoad,NewSource, NewTarget) .

Note that we use Source and Target since we may be moving from the left bank to the
right, or from the right bank to the left.

Choosing a Move We have five possibilities for boatloads: one missionary, two mission-
aries, one missionary and one cannibal, two cannibals, or one cannibal.

How do we represent the moves?

e we could represent the possible moves as a list, and repeatedly select elements from
this list; or

e we could represent each move as a separate clause and choose each clause in turn.

125

With the latter, we can use Prolog’s backtracking: get a move, then if it fails, backtrack and
get another move.

move/2 is called with its arguments uninstantiated:
move (Boatload)

This matches to potential moves and instantiates Boatload in the process. For example:
move([1,1,1],’Move 1 Cannibal and 1 Missionary.’).

means one missionary, one cannibal, and one boat. The second argument is a string describ-
ing the move. This matches the Comment variable in moveload/5.

You have to define the other moves yourself (write them here and in the designated part of
mandc.pl:

Checking Whether a Move is Possible Defining possibletomove/2:

e Suppose the current state of the Source is [2,0,1].

e Suppose the move selected ismove ([1,1,1],’Move 1 Cannibal and 1 Missionary.’).

This move is not possible, since there are no cannibals to move.

So, there must be, at the most, the number of missionaries, cannibals and boats in the move
as in the Source state. Write the code for possibletomove/2 here:

We’ve selected a move and checked if it is possible. Now we have to perform the move.

Performing the Chosen Move We want to define performthemove/5.

What we have to do:

e we are given the current Source and Target banks
e we know the move to be made

e we want to find out the new states of the Source and Target banks after the move.

126

performthemove (Source, Target,
Move, NewSource, NewTarget)

Define performthemore/5 here:

Safe States We still have to define safe/1, which determines whether a state is safe.

A state is safe provided there are not more cannibals than missionaries, or if there are no
missionaries in that state (then it doesn’t matter how many cannibals there are). So:

safe([2,3,1])

should be false, since there are two missionaries and three cannibals.

Define this predicate below. safe/1 should succeed if the state is safe, and fail if it is not.

The Problem of Looping We don’t want to waste effort visiting states already tried.

e How do we know if we’ve tried a state before? We keep a list of all the states visited.

e Do we need to remember the whole state? No: The left (or right) bank alone will do.

So:

1. Each time we make a move, add the old left side state to a list of previous left side
states.

2. Before committing ourselves to the next move, after checking the resulting state is
safe, we check if we are looping, i.e., if the new left state is a member of the list of
previously visited left states. If it is not, then we are okay.

3. This check is done using the member/2 predicate. member is negated using \+ so that
it will fail if the state is found to be in the list of previous states.

So the new gofrom/3 predicate incorporating the looping check is:

127

gofrom(Left, Right, PreviousLeftStates):-
applymove (Left,Right,Direction,Comment,NewLeft,NewRight),
safe (NewLeft),
safe(NewRight),
\+member (NewLeft, PreviousLeftStates),

write (NewLeft), write(Direction),

write(NewRight), write(’ ’), write(Comment), nl,
gofrom(NewLeft ,NewRight, [NewLeft |PreviousLeftStates]) .

The write/1 commands use the Direction and Comment variables to construct a description
of each chosen move. This will become clear once you run the program.

The code should now be complete and you will be able to get your code to generate a solution
by typing go.

12.3.3 Improving the search strategy

Running the program will generate a solution to the problem. Do you think this is the only
solution? Does the program generate any alternative solutions when you re-run it?

Can you think of how you would make it generate multiple answers?

The reason it only produces one solution is because it uses the same search strategy everytime
you run it. Which search strategy does the program currently use?

If you can’t find the search strategy trace a run of the program using trace. Find the calls
to move/2. These equate to the nodes on the search tree. Using these you can draw a search
tree and see how the program traverses it. This should give you an idea of which search
strategy it uses.

Can you think of how you would make the problem perform a different search strategy:
depth-first, iterative deepening, breadth-first (depending on which one you thought it was
already doing)?

[Optional] Try and implement a different search strategy. See if your new search strategy
reaches a solution in less steps than before.

128

go:-
gofrom([3,3,1], [0,0,0], [[3,3,111).

gofrom([0,0,0], [3,3,1]1,_).

gofrom(Left, Right, PreviousLeftStates):-
applymove (Left,Right ,Direction,Comment ,NewLeft ,NewRight),
safe (NewLeft),
safe(NewRight) ,
\+member (NewLeft, PreviousLeftStates),
write(NewLeft), write(Direction),
write(NewRight), write(’ ’), write(Comment), nl,
gofrom(NewLeft, NewRight,
[NewLeft |PreviousLeftStates]) .

applymove(Left, Right, ’-->’, Comment, NewLeft, NewRight):-
boathere(Left),
moveload(Left, Right, Comment, NewLeft, NewRight).

applymove (Left, Right, ’<--’, Comment, NewLeft, NewRight):-
boathere(Right),
moveload(Right, Left, Comment, NewRight, NewLeft).

boathere([_,_,1]).

moveload(Source, Target, Comment, NewSource, NewTarget):-
move (BoatLoad,Comment) ,
possibletomove (Source, BoatLoad),
performthemove (Source, Target,
BoatLoad, NewSource, NewTarget) .

member (X, [X[|_]).
member (X, [_|Z]) : -member (X,Z) .

Figure 32: The Code Provided

129

13 Parsing in Prolog

13.1 Introduction

In this section, we introduce the facilities that Prolog provides for parsing. This is done
through the idea of a parse tree as applied to a simple model for the construction of English
sentences.

We describe Prolog’s inbuilt mechanism for encoding a parser via grammar rules. We
then explain how to extract the parse tree and show how to extend a parser using arbitrary
Prolog code.

13.2 Simple English Syntax

First, what do we want the parser to do? We would like to know that a sentence is correct
according to the (recognised) laws of English grammar: so, The ball runs fast is syntactically
correct while The man goes pub is not, since the verb go (usually) does not take a direct
object.

Secondly, we may want to build up some structure which describes the sentence—so it would
be worth returning, as a result of the parse, an expression which represents the syntactic
structure of the successfully parsed sentence.

Of course, we are not going to try to extract the meaning of the sentence so we will not
consider attempting to build any semantic structures.

The components of this simple syntax will be such categories as sentences, nouns, verbs etc.
Here is a (top down) description:

Unit: sentence

Constructed from: noun phrase followed by a verb phrase

Unit: noun phrase

Constructed from: proper noun or determiner followed by a noun

Unit: verb phrase

Constructed from: verb or verb followed by noun phrase
Unit: determiner

Examples: a, the

Unit: noun

Examples: man, cake

Unit: verb

Examples: ate

130

sentence

(5
//\

nounphrase verbphrase
(np) (vp)
determiner noun orb nounphrase
(det) v (np)
h man ¢ determiner noun
the ate (det)
the cake

Figure 33: A parse tree

13.3 The Parse Tree

Figure 33 shows the parse tree for the sentence the man ate the cake with some common
abbreviations in brackets.

We must remember that many sentences are ambiguous—i.e., they result in different parse
trees.

13.4 Prolog Grammar Rules

In the earlier section, we saw the beginnings of a parser which used list processing techniques
to build up a string of words corresponding to a sentence. In this section, we describe Prolog’s
inbuilt mechanism for building grammar rules.

Prolog, as a convenience, will do most of the tedious work for you. We can take advantage
of a simplified representation that Prolog converts into normal Prolog syntax for us.

This is how we can define the simple grammar which is accepted ‘as is’ by Prolog.

sentence -—> noun_phrase, verb_phrase.
noun_phrase --> determiner, noun.
verb_phrase --> verb, noun_phrase.
determiner ~ --> [a].

determiner ~ --> [the].

noun -=> [man].

noun --> [cake].

verb --> [ate].

131

It is very easy to extend if we want to include adjectives.

noun_phrase --> determiner, adjectives, noun.
adjectives -—> adjective.

adjectives --> adjective, adjectives.
adjective -—> [young].

This formulation is sometimes known as a Definite Clause Grammar (DCG).

We might later think about the ordering of these rules and whether they really capture the
way we use adjectives in general conversation, but we won’t pursue this here.

We could have interpreted these rules in English as follows:

Predicate noun_phrase/1
noun_phrase(X) means that: X is a sequence of words
forming a noun_phrase

In which case, we could have used the predicate append/3 to implement this:

noun_phrase(X) : -
append(Y,Z,X),
det (Y),
noun(Z) .

det ([thel) .
noun([cat]).
noun([dog]) .

append([],L,L).
append([H|L1],L2, [HIL3]) : -
append(L1,1L2,L3).

?- noun_phrase([the,cat]).
yes

Here append/3 is used in reverse to decompose a list rather than build it up. Once decom-
posed the individual elements of the list (sentence) can be checked to see if they are the
correct parts of speech.

Instead, our definition for noun_phrase/2 is:

noun_phrase(X,Y) is true if:
there is a noun phrase at the beginning of sequence X
and the part of the sequence left after the nounphrase is Y.

132

In Prolog we could write this as:

noun_phrase(X,Y) : -
det(X,Z),
noun(Z,Y) .

det ([thelS],S).
noun([dogl|S],S).

?- noun_phrase([the,dog,bit,the,cat], [bit,the,cat]).
yes

Essentially, the Prolog Grammar Rule formulation is syntactic sugaring. This means that
Prolog enables you to write in:

sentence -—> noun_phrase, verb_phrase.

and Prolog turns this into:

sentence(S,50):-
noun_phrase(S,S1),
verb_phrase(S1,50).

and

adjective --> [young].

into

adjective(A,A0):-
'C’(A,young,A0).

where *C’/3 is a built in Prolog predicate which is defined as if:

'C’([H|T],H,T).

’C?/3 is a built in predicate that is used by other built in predicates.It is rarely used by
programmers as the same effect can be achieved using head and tail decomposition in the
head of a clause. Hence the obscure predicate name.

133

13.5 Using the Grammar Rules

Set a goal of the form

sentence([the,man,ate,a,cake],|[])

and the Prolog interpreter will check the sentence against the grammar you have defined
and tell you if it belongs to the language. A system like this is known as a recogniser. It is
of limited usefulness.

13.6 How to Extract a Parse Tree

We can add an extra argument which can be used to return a result.

sentence([[np,NP],[vp,VP]]) --> noun_phrase(NP), verb_phrase(VP).
noun_phrase([[det,Det],[noun,Noun|]}-> determiner(Det), noun(Noun).
determiner(the) --> [the].

and so on

What we have done above is declare predicates sentence/3, noun_phrase/3, verb_phrase/3,
determiner/3, and so on. The explicit argument is the first and the two others are added
when the clause is read in by Prolog. Basically, Prolog expands a grammar rule with n
arguments into a corresponding clause with n + 2 arguments.

So what structure is returned from solving the goal?

sentence(Structure,[the,man,ate,a,cake],[])

The result is:

[np,[[det,the],[noun,man]]],[vp,|...

Not too easy to read!

We can improve on this representation if we are allowed to use Prolog terms as arguments.
For example, in foo(happy(fred),12) the term happy(fred) is one of the arguments of
foo/2. Such a term is known as a compound term and we refer to its name foo’ as a functor.

With the help of compound terms, we could tidy up our representation of sentence structure
to something akin to:

sentence([np([det(the),noun(man)]),vp([...

134

13.7 Adding Arbitrary Prolog Goals

Grammar rules are simply expanded to Prolog goals. We can also insert arbitrary Prolog
subgoals on the right hand side of a grammar rule, but we must tell Prolog that we do not
want them expanded. This is done with the help of braces—i.e., ‘{’ and ‘}’.

For example, here is a grammar rule which parses a single character input as an ASCII code
and succeeds if the character represents a digit. It also returns the digit found.

digit(D) -->
X],
{ X >= 48§,
X =< 57,
D is X-48 }.

The grammar rule looks for a character at the head of a list of input characters and succeeds
if the Prolog subgoals

{ X >=48,
X =< 57,
D is X-48 }.

succeed. Note that we assume we are working with AscII codes for the characters and that
the Ascii code for “0” is 48 and for “9” is 57. Also note the strange way of signifying “equal
to or less than” as “=<".

Further details on the use of Definite Clause Grammars will be provided in the lectures. If
you want to learn more about the use of DCGs in Prolog (which is outside the scope of this
course) see Chapter 9 in Clocksin and Mellish or Chapter 21 in Bratko.

135

13.8 Practical 6: Definite Clause Grammars

13.8.1 Introduction

This practical is intended to give you some experience in writing Definite Clause Grammars.
You are asked to extend a basic grammar in various ways.

13.8.2 The Basic Grammar

1. Download the file grammari.pl from the course website, the contents of which are
shown in Figure 34, to your area. Get into Prolog and consult your copy of the file.

Note here that the symbols vt and vi are being used to mean transitive verb and
intransitive verb respectively. A transitive verbs is one which takes an object noun
phrase; an intransitive verb is one which does not take an object noun phrase.

2. You might find it interesting to do a 1isting of the grammar; you will see from this
that Prolog adds extra arguments in the conversion from the definite clause grammar
formalism to normal Prolog clauses.

| ?- [grammari].
{consulting grammarl.pl...}
{grammar consulted, 50 msec 2650 bytes}

yes
| ?- listing.

n(A, B) :-

’C? (A, dog, B).
n(A, B) :-

’C>(A, cat, B).

s(A, B) :-
np(A, C),
vp(C, B).

yes
| 7=

3. To test the grammar, you have to provide calls to s with two arguments, since you are
calling the translated form. The first argument is the list of words whose sentencehood

you want to check, and the second argument is the empty list:

| ?- s([a,cat,chases,a,dogl,[]).

yes
| 7=

136

s —--> np,vp.

np —-> det, n.
np --> pn.

vp --> vt, np.
vp --> vi.

det --> [every].

det ——> [a].
det --> [the].

vt --> [chases].
vi --> [miaows].

n —--> [dog].
n —-> [cat].

pn --> [fido].

pn --> [tigger].

Figure 34: A simple Definite Clause Grammar

Note that you can also use this grammar to randomly generate sentences by providing
a variable as the first argument to s:

| ?- s(Sentence, []1).

Sentence =

Sentence =

Sentence =

[every,dog,chases,every,dog]l 7 ;
[every,dog,chases,every,cat] 7 ;

[every,dog,chases,a,dog] 7 ;

Test the grammar with the following sentences and make sure you understand its
behaviour; before trying each sentence, try to work out what Prolog will do and why.

the dogs miaow

the cat miaows

fido chases a cat
every dog chases
tigger miaows a dog
a tigger miaows

Try other random sentences.

137

13.8.3 Structure Building

A string of words is in the language defined by a grammar if a tree corresponding to the
structure of the string can be built. Parsing a sentence in Prolog consists in building such
a tree implicitly. We can make this tree explicit using another facility provided by the pDca
notation: grammar symbols may be given arguments, in exactly the same way as Prolog
goals. To build the tree, we associate with each non-terminal symbol an argument which
represents its structure, as in the following example:

s([s, [NP,VP11) --> np(NP), vp(VP).

For this exercise, you should augment the grammar given in Figure 34 with structure-building
arguments. You should achieve the following result.

| ?- s(ParseTree, [tigger ,miaows], [1).
ParseTree = [s,[[np, [[pn, [tigger]]]1], [vp, [[verb, [miaows]]]1]11] ? ;

no
| -

So, for each node n in the tree, the result should contain a list whose first element is the
name of the node, and whose second element is a list of elements that correspond to the
nodes that are daughters of n. Each terminal node should be represented by the word that
lies at that terminal node.

Note that, since we are adding an additional arguement to each predicate, calls to s must now
contain this new argument; it appears before the arguments required by the DCG translation
process.

Make the alterations to grammarl.pl. Perform a few tests and then show it to
the demonstrator.

Also notice that, in the example above, we have typed a ; to see if Prolog can offer any
more parses. When more than one parse is available, we say that the string is syntactically
ambiguous.

Will this grammar accept any syntactically ambiguous strings? Why?

13.8.4 Adding Number Agreement

Above, we saw how an extra argument was added to the non-terminal symbols of a grammar
to build a syntactic structure. Any number of arguments may be added in this way. The
DCG translator just passes through the argument structure and adds the two string handling
arguments at the end.

138

This aspect of DCGs can be used to improve the coverage of a grammar. For instance, we
can add an argument whose values range over {singular, plural} to represent the feature
number. By introducing the appropriate values for this feature in the lexicon and then
percolating them up and identifying the values on say, subject and verb phrase, we can
guarantee number agreement. Here’s an example:

n([n, [dogl],singular) --> [dog].

n([n, [dogs]],plural) --> [dogs].

np([np, [DET,N]] ,Num) --> det(DET,Num), n(N,Num).
s([s, [NP,VP]]) --> np(NP,Num),vp(VP,Num) .

For this part of the exercise, you should augment all of the appropriate rules in the grammar
to take account of number agreement information, so that your grammar should rule out
sentences like the following:

. the dogs miaows
. the cat miaow

1

2

3. fido chase a cat

4. every dogs chases a cat
5

. tigger chases a dogs

To make this work, you will have to attend to the following:

e Note that, in English, the subject noun phrase and the verb phrase in a sentence must
agree in number; similarly, in a noun phrase, the determiner and noun must agree in
number. However, the number of the object noun phrase in a sentence is not relevant
to the grammaticality of the sentence as a whole.

e Eack lexical rule (the rules that have words as their right hand sides) will need to be
augmented with number information, which will then percolate up via unification to
higher level nodes in the trees.

Make the alterations to grammar1.pl. Test that the example sentences above are
rejected by your new code and then show it to the demonstrator.

13.8.5 Extending the Coverage of the Grammar
You should now try to extend the coverage of the grammar to include the following phe-

nomena. In each case you will have to add at least one new grammar rule and some lexical
rules.

Relative clauses as in a cat that chases tigger miaows. You should incorporate number
agreement arguments to rule out sentences like *a cat that chase tigger miaows.

Note:

139

e The relative clause (that chases tigger) modifies the noun within the initial Noun
Phrase (a cat) so it should be placed within the NP grammar rule.

e A relative clause is quite a complex grammatical structure but for this practical
just limit yourself to generating the example sentence. Look at the example
sentence and see which rules and extra lexical entries (e.g. ’that’ is a pronoun)
you will need to generate it.

Write your added entries here:

Prepositional phrases Now try adding rules for prepositional phrases such as

A cat with a hangup chases Tigger.
A cat with a hangover miaows in discomfort.

Note here that prepositional phrases may appear to be attached to either noun phrases, as
in the first case, or to verb phrases, as in the second case.

Your grammar should provide two parses for the sentence a cat chases the dog with a mouse-
trap.

Ultimately your grammar should build structure for these syntactic constructions, but you
may find it easier in the first instance to add the additional grammar rules required to the
version of the grammar that doesn’t build structure.

Write your added entries here:

13.8.6 Optional extension of DCG

If you still have time in the tutorial try and think of other ways you can extend the scope
of your DCG so thatit can recognise and generate more sentences. Try adding more words
to the lexicon and getting your program to generate sentences. If some of them appear
grammatically incorrect think of why they are incorrect and see if you can fix them.

140

14 Input/Output

This section will describe the built in predicates that allow us to pass data into and get data
out of a running Prolog program. This data can be in the form of single lines of input/output
or whole files. Rudimentary processing of that data is also discussed.

14.1 Basic input/output facilities

Prolog provides the system predicates reading and writeing for reading and writing atoms:

| ?- read(X).
|: 2.
X=27°

yes

| ?7- read(X).

|: ’This is just a few words between single quotes’.
X = This is just a few words between single quotes ?
yes

| ?7- write(foo).

foo

yes

| ?- write(’Where *did* you buy that jacket?’).
Where *did* you buy that jacket?

yes

| 7=

We might start with a basic program that computes the cube of a number:

cube(N,C) :-
Cis N * N * N.

Using the program:

| ?- cube(l, X).

yes
| ?- cube(5, Y).

Y =125 7

141

yes
| ?- cube(12, Z).

Z = 1728 7

yes
| 7-

We can them make modification so that the program will read the numbers itself:

cube :-
read(X),
process (X) .

process(stop):- !.

process(N) :-
Cis N * N * N,
write(C), ttyflush,
cube.

| ?- cube.
[: 2.

8

|: 5.

125
|: 1728.
864813056
|: stop.

yes
| 7-

(n.b. ttyflush/0 is a built in predicate that ensures that the prolog prompt appears on the
screen)

We might think that this could be simplified:

cube :-
read(stop) .

cube :-
read(N),
C is N * N * N,
write(C), ttyflush,
cube.

However, we get the following behaviour:

142

?- cube.
. 34.

: stop.

What happens is that read cannot be redone, so when the first read in the first cube rule
is called, the number ’34’ is input. It failes to match to ’stop’, so this rule fails and the next
cube rule is tried. This calls read and waits for a further input, ’2’, which it then ’cubes’
and writes out: the first value input has been lost. We can illustrate this by tracing the
program.

| ?- trace, cube.
1 1 Call: cube ?
2 2 Call: read(stop) 7

|: 34.
2 2 Fail: read(stop) ?
2 2 Call: read(_165) ?
[: 2.
2 2 Exit: read(2) 7
3 2 Call: _170 is 2%2%2 7
3 2 Exit: 8 is 2%2x2 7
4 2 Call: write(8) 7
8 4 2 Exit: write(8) ?
5 2 Call: ttyflush 7
5 2 Exit: ttyflush 7
6 2 Call: cube 7
7 3 Call: read(stop) ?
|: stop.
7 3 Exit: read(stop) 7
6 2 Exit: cube 7
1 1 Exit: cube ?
yes

e get(X) unifies X with next non blank printable character (in ASCII code) from current
input stream

e get0(X) unifies X with next character (in ASCII) from current input stream

e put (X) puts a character on to the current output stream; X must be bound to a legal
ASCII code

For example:

| ?- get0(C).
| : <--nothing input; identifies new line command

143

yes
| ?- get0(C).
|: £
C =102 7
yes
| 7- get0(C).
| : <-- Space
c=327
yes
| 7-
7- get(C).

I
| : <-- Return pressed; can’t match so tries again.
|: <-- Return pressed; can’t match so tries again.
| <-- Return pressed; can’t match so tries again.
| <-- identifies full-stop

C=46 7

yes

| ?- get(C).
l:y
C=1217
yes

| ?- put(87).
W

yes

| ?- put(32).
yes

| ?7- put(10).
yes

| ?-

If you want to know which characters have which ASCII characters use this on-line ASCII
table: http://www.asciitable.com/.

14.2 File input/output
A wee program:

144

double(X, Y):-

Y is 2x*X.

test:-
read(X),
double(X,Y),
write(Y),
nl.

| ?- test.

[: 2.

4

yes

| ?-

We might want to put this into a test loop, for testing a number of values.

double(X, Y):-
Y is 2%X.

test: -
read(X),
\+(X = -1),
double(X,Y),
write(Y),
nl,
test.

test.

Rather than keep having to type in the test values, we might want to store then in a file,
and read them into the program each time an input is called for.

go:-
see(datafile),

test,
seen,
write(’0Okay, all done.’).

double(X, Y):-
Y is 2%X.

test:-
read(X),
\+(X = -1),
double(X,Y),

145

write(Y),
nl,
test.

test.
So if the contents of the file were:

3.
54.
-1.

and we ran the program, we would get:

| ?- go.

6

108

Okay, all done.
yes

| 7-

The useful predicates here for reading in from a file are:

e see/l
e seen/0

e seeing/1

where see/1 specifies which file to read from (’datafile’ in the above example); seen/0 closes
this file and returns to the default input from the terminal, and seeing/1 enables the user
to find out where the input is coming from at any time.

We might also want to consider writing the output from our testing to a file:

go:-
tell(resultsfile),

see(datafile),

test,

seen,

told,

write(’0Okay, all done.’).

double(X, Y):-
Y is 2xX.

test:-
read(X),

146

\+(X = -1),
double(X,Y),
write(Y),
nl,

test.

test.
The system predicates provided here are:

e tell/1
e t0ld/0

e telling/1

where tell/1 specifies the file to write to; to1d/0 closes this file and returns to the default
keyboard output, and telling/1 allows the user to query where the output is being sent to
at any time.

Once an input file is identified with see/1 and an output file identified with tell/1 read/1
and write/1 commands read from and write to these datafiles rather than the terminal
window. These commands should be used carefully as this kind of casual manipulation of
datafiles can lead to confused program behaviour.

Instead of defining an arbitrary character to indicate when we have read all the values we
need from a file, we can use the pre-defined end_of_file marker.

go:-
tell(resultsfile),
see(datafile),
test,
seen,
told,
write(’Okay, all done.’).

double(X, Y):-
Y is 2x*X.

test: -
read(X),
\+(X = end_of_file),
double(X,Y),
write(Y),
nl,
test.

test.

147

14.3 Translating atoms and strings

The name predicate defines the relation that holds between an atom and the list of characters
that make it up.

| ?- name(cat,Y).
Y = [99,97,116] 7

yes
| ?- name(X,[98,101,114,116]).

X = bert ?

yes
| 7-

At least one of name’s arguments must be instantiated. It can be used to avoid ASCII codes:

| 7- [98,101,114,116] = "bert".

yes

| ?_ [X] =||au.
X=97 7

yes

| 7-

This will be used in the later section on Morphology.

148

14.4 Practical 7: Input/Output

14.4.1 Introduction

This practical is intended to give you some experience in using Prolog’s built-in input/output
predicates. From the notes above you should have some understanding of the operation of
each of the following predicates:

Predicate Behaviour

read/1 read a term from the current input stream

write/1 write a term to the current output stream

nl/0 write a newline to the current output stream

tab/1 write a specified number of spaces to the current output stream
put/1 write a specified ASCII character to the current output stream
get/1 read a printable AScCII character from the current input stream
get0/1 read an ASCII character from the current input stream

see/1 make the specified file be the current input stream

seeing/1 determine the current input stream

seen/0 close the current input stream and reset it to user
ttyflush/0 flush the output buffer

tell/1 make the specified file be the current output stream
telling/1 determine the current output stream

t0l1d/0 close the current output stream and reset it to user

name/2 arg 1 (an atom) is made of the AsciI characters listed in arg 2

In this practical, you will use some of these predicates to write a number of programs that
make use of input and output. More information on each of these predicates can be found
in the sicstus manual.

This practical contains a lot of material. You are not expected to finish it but see how
far you can get. You do not need to write your answers on the worksheet and show them
to the demonstrator (although writing out code on paper before typing it into the com-
puter is always advisable). You will be asked to incrementally develop five predicates:
echo, limit, numberfile, and findnumber. When you have a final version of each pred-
icate (you will continually add to them throughout the practical) show it to the demonstrator
who will log it as complete. If you can’t complete a predicate then call the demonstrator
over and show them your problems.

14.4.2 Basic Terminal Input/Output

1. Write a predicate echo/0 that reads a number from the terminal and writes it out
again. Your program should keep going until it reads the number 0. So, for example,
you should see behaviour like the following:

| ?- echo.

149

: 1278.

—_— R, — 0 = — W —

o

yes
| 7=

Note that each number typed in must be terminated by a full stop.

2. Modify this program so that it prints a prompt for input, and prints a response message,
along the following lines:

| ?- echo.

Give me a number: 4.
Your number was 4.

Give me a number: 129.
Your number was 129.
Give me a number: O.
Okay, see you later.
yes

| -

Note that you will have to use ttyflush to print the prompt in the way it is done
here; alternatively, you might look at what the manual has to say about the built-in
predicate prompt/2.

3. Write a predicate 1imit/1 which takes a number as argument, and then reads numbers
typed at the terminal, for each number saying whether it is greater than, equal to, or
less than the number provided as argument. The program should stop when it reads
a 0. The program’s behaviour should be something like the following:

| ?- 1limit(41).
Give me a number: 28.

Your number was below the limit.
Give me a number: 41.

Your number was the same as the limit.
Give me a number: 71891.

Your number was above the limit.
Give me a number: O.

Okay, see you later.

yes

| 7-

150

14.4.3 File Input/Output

1. Write a predicate called numberfile/1 that takes as argument the name of a file. The
named file should be one you have already constructed, containing a number terminated
by a full stop on each line, like the following:

1.

1898.

34.
1891238912398.
12.

18.

0.

The last number in the file should be a 0; this is how you will terminate the reading
process.

The predicate should open the file and read numbers from the file one at a time, writing
them out to the screen, until it reads the 0. It should then close this input stream.

2. Augment the program above so that it will write out any number it finds, including
0. To do this, you should modify the program so that it terminates on reaching the
end_of_file marker.

3. Write a predicate findnumber/2 that takes as arguments a number and the name of a
file. The predicate should open the file and read numbers from the file one at a time,
doing nothing until it finds a number that matches the first argument; it should then
announce this fact and continue with the rest of the file.

4. Modify the echo predicate you defined earlier so that it now takes two arguments, the
first the name of an input file and the second the name of an output file.

The predicate should open the input file and read numbers from the file one at a time,
writing them out to the output file. Use the end_of_file marker to terminate the
process, at which point you should make sure you reset both the input and output
streams to user.

5. Modify echo again, this time to read the names of the input and output files from the
terminal. You should print appropriate prompts in each case.

6. Modify the predicate 1imit you defined earlier, to read input from a file and to write
the numbers out to different places as follows:

e if the number is the same as the limit, announce this on the terminal,
e if the number is less than the limit, write it to a file called lower; and

o if the number is greater than the limit, write it to a file called higher.

Once done, check the contents of the two files to make sure your program did what it
should have done.

Remember to show each completed predicate to the demonstrator so that they have a record
of your work.

151

15 Morphology: A List Processing Application

Most natural languages show a regularity in the way words decompose into units of meaning:
for example, in English most plurals are formed by adding the letter s. This suggests a
possible economy for NLP systems: instead of storing every form (singular, plural, etc.) of
each word, we can store just the base form plus some rules for building the derived forms.
Question: how would we do this in Prolog?

We are going to look at:

e Turning atoms into strings and back again.
e Using append to concatenate strings.

e Adding exceptions to general rules.

Just to remind you about lists:

[1] = [11[]]

[1, 2] = [11[2]]

(1, 2, 31 = [1][2,3]]
= [11[2][3]11]
= [1,2|[3]]

and about using the predicate append:

append([],L,L).
append([H|T], L1, [HIL2]):-
append(T, L1, L2).

Given the goal:
?- append([a,b], [c,d]l, L).

the following trace results:

| ?- trace, append([a,b]l,[c,d],L).
{The debugger will first creep
-- showing everything (trace)}
1 1 Call: append([a,bl,[c,d],_84) 7
Call: append([b]l,[c,d]l,_238) 7
Call: append([],[c,d],_345) 7
Exit: append([], [c,d],[c,d]) ?
Exit: append([b]l, [c,d],[b,c,d]) ?
Exit: append([a,b], [c,d], [a,b,c,d]) 7

=N W WwN
=N W WwN

L = [a,b,c,d] 7

yes
{trace}
| 7-

152

So now we have name (see previous chapter) which gives us a way of converting an atom into
a list of characters, and append which gives us a way of concatenating lists. So, we have a
way of concatenating atoms:

| ?- name(black,L1), name(bird,L2),
append(L1,L2,L3), name(Word,L3).

L1 = [98,108,97,99,107],
L2 = [98,105,114,100],
L3 = [98,108,97,99,107,98,105,114,100],

Word = blackbird ?

yes
| 7=

If we then think about the simple plural rule in English:

To make the plural form of a singular noun, add an s.

for example:

Singular Noun Plural Noun

terminal terminals
tree trees
cube cubes

How can we perform this mapping in Prolog? We could define a predicate
plural(SingularNoun, PluralNoun)

with the following behaviour:
| ?- plural(cube, Plural).

Plural = cubes 7

yes
| ?- plural(keyboard, Plural).
Plural = keyboards ?

yes
| ?-

How do we do this?

% plural(Sing, Plu)

153

plural(Sing, Plu):-
name(Sing, SingChs),
name(s, EndChs),
append (SingChs, EndChs, PluChs),
name (P1lu, PluChs).

Tracing an example:

| ?- trace, plural(cube, Plural).

Call: plural(cube,_58) 7

Call: name(cube,_210) ?

Exit: name(cube, [99,117,98,101]) 7

Call: name(s,_216) 7

Exit: name(s,[115]) 7

Call: append([99,117,98,101],[115],_223) 7

Call: append([117,98,101],[115],_706) ?

Call: append([98,101],[115],_814) 7

Call: append([101],[115],_921) 7

Call: append([],[115],_1027) 7

Exit: append([], [115],[115]) 7

Exit: append([101],[115],[101,115]) 7

Exit: append([98,101],[115],[98,101,115]) 7

Exit: append([117,98,101],[115],[117,98,101,115]) 7
Exit: append([99,117,98,101],[115],[99,117,98,101,115]) 7
Call: name(_58,[99,117,98,101,115]) ?

Exit: name(cubes,[99,117,98,101,115]) 7

Exit: plural(cube,cubes) ?

Plural = cubes 7
yes

There are other morphological transformations in English: for example, we generally add ed
to get the past tense of verbs:

Present Tense Past Tense

collect collected
screen screened
attend attended

We can build a more general procedure

% generate_morph(BaseForm, Suffix, DerivedForm)
generate_morph(BaseForm, Suffix, DerivedForm):-
name (BaseForm, BaseFormChs),

name (Suffix, SuffixChs),

154

append (BaseFormChs, SuffixChs, DerivedFormChs),
name (DerivedForm, DerivedFormChs) .

A problem: there are exceptions to the morphological rules we have seen.

For example:

e To make the plural of a word like knife, we not only add an s but we change the f to
a v.

e To make the past tense of a word like create, we add only a d, instead of ed.

How do we deal with this? First, we define a predicate morph/3: this is just append/3 under
another name.

morph([], Suffix, Suffix).
morph([H|T], Suffix, [H|L2]):-
morph(T, Suffix, L2).

We call this inside generate_morph:

% generate_morph(BaseForm, Suffix, DerivedForm)
generate_morph(BaseForm, Suffix, DerivedForm):-
name (BaseForm, BaseFormChs),
name (Suffix, SuffixChs),

morph (BaseFormChs, SuffixChs, DerivedFormChs),
name (DerivedForm, DerivedFormChs) .

A few other things you should remember about strings:
| 7- X = "fe".

X = [102,101] 7

yes
| ?2- X = "g",
X = [115] 7
yes

| 2= X = "yes".

X = [118,101,115] 7
yes
| 7- X = "e".

155

X = [101] ?
yes
| 7- X = "ed".

X = [101,100] ?
yes
| 7-

Note that the exceptions we indicated are also rules: there are classes of words that have
this behaviour (in other words, they are not irregular forms).

So, we can add special base cases for these more specific rules:

morph([102,101], [115], [118,101,115]).
morph([101], [101,100], [101,100]).
morph([], Suffix, Suffix).

morph([H|T], Suffix, [H|IL2]):-
morph(T, Suffix, L2).

But we don’t need to use ASCII codes explicitly:

morph("fe“, ”S”, "VeS") .
morph("e" s Iledll s "ed”) .
morph([], Suffix, Suffix).

morph([H|T], Suffix, [H|IL2]):-
morph(T, Suffix, L2).

15.1 Summary

e Understand how to use name to turn atoms into strings and back again.
e Understand how to use append to concatenate strings.

e Understand how to add exceptions to general rules.

156

15.2 Prolog Practical 8: Morphology

15.2.1 Introduction

This practical is intended to give you some practice in using list processing to perform
morphological manipulations of strings. The practical is built around the use of the built-in
predicate name/2 and the generate_morph/3 predicate explained above.

Write your prolog code in the spaces provided and show them to the demonstrator.

15.2.2 Basic Operations on Atoms and Strings
To do these problems, you will need to make use of the built-in predicate name/2.

1. Define a predicate starts/2 that takes as arguments an atom and a character, and
checks whether the atom starts with the character. So, your predicate should behave

in the following manner:

| ?7- starts(foo,f).

yes
| 7- starts(baz,g).

no
| 7-

Write your code here:

2. Define a predicate called plural/2 which will convert nouns into their plural forms:
for example

| ?7- plural(cake,X).
X = cakes

yes
| ?- plural(xylophone, X).

X = xylophones
yes

| -

157

3. Modify plural so that it reads words from a file and writes the output to the screen.

Write your code here:

15.2.3 Morphological Processing

Figure ?? shows the basic elements required for morphological processing.

This is used as follows:
| ?- generate_morph(knife,s,W).
W = knives 7

yes
| ?- generate_morph(terminal,s,W).

W = terminals ?

yes

| ?- generate_morph(attempt,ed,W).
W = attempted ?

yes
| ?- generate_morph(inundate,ed,W).

W = inundated 7

yes
| 7-

For this part of the practical, you have to extend this program in various ways.

1. First, make sure you understand thoroughly how the program works. To do this you
should type it in and trace its behaviour.

2. The program as it stands includes, effectively, a rule that pluralises words ending in -fe
by changing the f to a v before adding the s. There are other rules required for other
plurals. Add additional clauses to obtain the following behaviour from your program:

158

| ?- generate_morph(box,s,W).
W = boxes 7

yes
| ?- generate_morph(fox,s,W).

W = foxes 7
yes

Write your code here:

| ?- generate_morph(spy,s,W).
W = spies 7

yes
| ?- generate_morph(fly,s,W).

W = flies 7

yes
| -

Write your code here:

3. Think about how would you extend the program above so it also deals with the fol-
lowing case:

| ?- generate_morph(ox,s,W).

W = oxen 7

yes
| 7-

You don’t have to implement this: the objective is to understand the nature of the
problem.

4. Finally, add clauses to your program so that it produces the following behaviour:
| ?- generate_morph(slow,ly,W).
W = slowly 7

159

yes
| ?- generate_morph(full,ly,W).

W = fully 7

yes
| -

Write your code here:

15.2.4 TImplementing Eliza in Prolog

ELIZA was the very first Chat-Bot. It was developed by Weizenbaum in 1966 to simulate
(or rather parody) conversation with a human typing input at a terminal. It works by
recognizing simple word patterns and replying by using preprogrammed response patterns.
This allows it to imply depth and understanding without actually having any. So much so
that early users of ELIZA believed it to be the first step to passing the Turing Test (the gold
standard for AT). This claim was passionately dismissed by Weizenbaum (for reasons that I
am sure will become apparent).

ELIZA uses similar pattern matching techniques to those you have been developing in this
practical. Your task is to examine a rudimentary version of ELIZA and try to improve it.

Download eliza.pl from the course website and examine the code. A large portion of the
code is concerned with Input/Output. The interesting parts of the code are printed below.

The general algorithm:

e Read a sentence.
e Perform some transformation on the sentence to produce a response.

e Write out the response.

A Rudimentary Eliza

go:-
read_in(Input),

process (Input) .
process ([W1,W2]) :-

member (W1, [bye, goodbye, quit, halt, chowl),
write(’I hope I was of some help.’), nl.

160

process (Input) :-
build_response(Input, Output),
reply(Qutput), nl,
go.

build_response(Input, Output):-
rule(Input, Output).

rule([Greeting|Rest], [hil|Rest]):-
member (Greeting, [hi, hello]).

rule([i,hate,X,’.’],

[do, you, really, hate, X, 7]).
rule([X,you,Y,me,’?’],

[why, do, you, ask, if, ’I’, Y, you, ?]).
rule([i,1like,X,’.’],

[does, anyone, else, in, your, family, like, X, 7]).
rule([are, you, X,’?’],

[what, makes, you, think, ’I’, am, X, 7]).
rule([you, are, X, ’.’],

[does, it, please, you, to, believe, ’I’, am, X, ?]).
rule(X,

[please, go, on, ’.’]).

A Consultation

| 7- go.
| : Hello there.
Hi there.

| : How are you?
Please go on.

|: Can you help me?
Why do you ask if I help you?

| : Because you’re supposed to.
Please go on.

|: Don’t you like me?
Why do you ask if I like you?

|: You’re not being very helpful.
Please go on.

|: Are you deaf?
What makes you think I am deaf?

161

|: You don’t help much.
Please go on.

|: Oh, I give up.
Please go on.

| : Bye.
I hope I was of some help.

Improving ELIZA The current version of ELIZA is very limited in the patterns it can
recognize. Examine the code carefully. read_in/1 takes user input from the command
prompt and turns it into a list of words. These are then sent to rule/2 which pattern
matches the input and produces a response. Make sure you understand how this works.

1. The range of responses ELIZA can produce is limited by the number of rules it has.
Try writing some new clauses for rule/2.

e Make sure you respect the ordering of clauses that are already in the program.
The default rule (the one with a variable in place of the input) must always be
at the bottom.

e Your rules do not have to match the entie input. You can use [HIT] to split the
input and process specific parts of it.

e The first clause of rule/2 already in the code is actually a rule rather than a
fact. Can you think of any other patterns that might need a similar degree of
processing?

Write samples of your new rules along with example consultations here:

2. When generating a response ELIZA currently outputs sentences starting with a lower-
case letter. This is because any word beginning with an upper-case letter stored in the
response lists would be identified as a variable. One solution to this would be to use
strings instead of constants in the response lists (i.e. enclose all words in single quotes:
’What’). Another more elegant way would be to change the first letter of the response
to a capital before writing it to the terminal.

e Look at eliza.pl. Beneath reply/1 there is another version commented out.
This version contains a command capitalize/2 which takes a word starting with

162

a lower-case letter and converts the first character into upper-case. See if you can
define this predicate.

e For an idea of how to change letter case look at the ASCII table (www.asciitable.com).
Lower-case letters have an ASCII number 32 points higher than their upper-case
equivalents.

Write capitalize/2 along with example consultations here:

3. Currently the pattern matching rules have to handle agreement of pronouns. For ex-
ample, if you were to ask the question Why do you hate me? the ’you’ only gets
transformed to ’me’ in the response because this transformation is explicitly repre-
sented in the response pattern. Write a predicate you2me/2 which takes a list of words
and converts all instances of me and ’I’ to you.

Write the predicate here:

[This section is optional] Now try and integrate it into ELIZA. Where do you think would
be the best place to put it, before or after pattern matching? Will you have to change any
clauses of rule/2? What do the new reponse patterns look like? Is it better or worse than
before?

163

16 Planning in Prolog: The Monkey and the Bananas

Here we take a standard example AI problem: modelling problem-solving behaviour. We
look at representing the world as symbolic descriptions, using predicates and arguments for
relations and objects and also for actions. We use operators to represent actions in the
world—a good approach where the search space is potentially infinite, but a finite set of
potential actions and outcomes can be identified.

16.1 The Problem

A hungry monkey is in a cage. Suspended from the roof, just out of his reach, is
a bunch of bananas. In the corner of the cage is a box. After several unsuccessful
attempts to reach the bananas, the monkey walks to the box, pushes it under
the bananas, climbs on to it, picks the bananas and eats them.

How do we write a program that can build a plan which, if executed, would model the
behaviour of the monkey?

16.2 The General Approach to a Solution

We express the actions that can be performed as operators which act on the world and
change its state.

For example:

e the monkey can move objects;
e the monkey can move from place to place;
e the monkey can stand on the floor or climb on the box;

e the monkey can grab bananas.

Operators: the basic techniques we’ll use come from an early A1 planning language called
STRIPS.

e Each operator has outcomes: it affects the state of the world.

e Each operator can only be applied in certain circumstances: these circumstances are
the preconditions of the operator.

16.3 Representational Considerations

An informal solution would be:

164

The monkey pushes the box under the bananas, climbs on it and grabs the
bananas.

Questions:

e How do we represent the state of the world?
e How do we represent operators?
e Does our representation make it easy to:

— check preconditions;
— alter the state of the world after performing actions; and

— recognise the goal state?

Representing the World: we have:

e a monkey, a box, the bananas, a floor;
e places in the room—call them a, b, and c;
e relations of objects to places:

— the monkey being at location a;
— the monkey being on the floor;
— the bananas hanging;

— the box being at the same place as the bananas.
We use appropriately chosen predicates and arguments:

at (monkey, a)
on(monkey, box)
status(bananas, hanging)

at(box,X), at(bananas,X)
The Initial State of the World:

on(monkey, floor),
on(box, floor),

at (monkey, a),

at(box, b),

at (bananas, c),
status(bananas, hanging)

The Goal State:

165

on(monkey, box),

on(box, floor),

at (monkey, c),

at(box, c¢),

at(bananas, c),
status(bananas, grabbed)

Representing Operators: We make some assumptions about the use of the operators
and what needs to be stated explicitly:

Moving around in the world: only the monkey can move: go(X,Y)—e.g., go(a,b)
Pushing things around: Again, only the monkey does this: push(B,X,Y)—e.g., push(box,a,b)
Climbing on objects: climb_on(X) Note: we don’t allow the monkey to get off the box!

Grabbing objects: grab(X)

Each operator has preconditions and effects on the world:

Operator Preconditions Effects
Delete Add

go(X,Y) at(m,X) at(m,X) at(m,Y)
on(m,fl)

push(B,X,Y) at(m,X) at(m,X) at(m,Y)
at(B,X) at(B,X) at(B,Y)
on(m,fl)
on(B,fl)

climb_on(B) at(m,X) on(m,fl) on(m,B)
at (B,X)
on(m,fl)
on(B,fl)

grab(B) on(m,box) status(B,h) status(B,g)
at (box,X)
at(B,X)

status(B,h)

where:

m = monkey
fl = floor

h = hanging
g = grabbed

166

The General Solution

1. Look at the state of the world:

e Is it the goal state? If so, the list of operators so far is the plan to be applied.
e If not, go to Step 2.

2. Pick an operator:

e Check it has not already been applied (i.e., check for looping).
e Check if it can be applied (ie that the preconditions are satisfied).

If either of these checks fails, backtrack to get another operator.
3. Apply the operator:

e Make changes to the world: delete from and add to the world state.
e Add the operator to the list of operators to be applied.
e Go to Step 1.

on(m,fl), on(box,fl), at(m,a), at(box,b),
at(bananas,c), status(bananas, hanging)

.

1
on(m,fl), on(box,fl), at(m,b), at(box,b),

at(bananas,c), status(bananas, hanging)
1
‘push(box,b,c) ‘
\
on(m,fl), on(box,fl), at(m,c), at(box,c),
at(bananas,c), status(bananas, hanging)

.

‘climb_on (box) ‘
+
on(m,box), on(box,fl), at(m,c), at(box,c),
at(bananas,c), status(bananas, hanging)

1
‘ grab(bananas) ‘
1
on(m,box), on(box,fl), at(m,c), at(box,c),
at(bananas,c), status(bananas, grabbed)

How the World Changes

16.4 Doing All This in Prolog

The top level predicate will be solve/3, whose arguments are the initial state, the goal state,
and the eventual plan.

167

Operators will be represented by the predicate opn/4 whose arguments are

e the operator name and arguments;
e the list of preconditions;
e what to delete from the world state;

e what to add to the world state

The Top Level in Prolog:

% solve(+State, +Goal, -Plan).

% Given starting State and final Goal state,
% returns a Plan consisting of a list of

% operations for transforming State into

% Goal (N.B. operators in plan are in reverse
% order of application).

solve(State, Goal, Plan):-
solve(State, Goal, [], Plan).

The Operators in Prolog:

opn(go(X,Y),
[at (monkey,X), on(monkey,floor)],
[at (monkey,X)],
[at (monkey,Y)1) .

opn(push(B,X,Y),
[at (monkey,X), at(B,X),
on(monkey,floor), on(B,floor)],
[at (monkey,X), at(B,X)],
[at (monkey,Y), at(B,Y)]).

opn(climbon(B),
[at (monkey,X), at(B,X),
on (monkey,floor), on(B,floor)],
[on(monkey,floor)],
[on (monkey,B)]) .

opn(grab(B),
[on (monkey,box), at(box,X),
at(B,X), status(B,hanging)],
[status(B,hanging)],
[status(B,grabbed)]) .

168

The Main Predicate: The work is done by the solve/4 predicate. There are two cases:

e if we've reached the goal state; and

e if we haven’t reached the goal state.

The arguments to solve/4 are the current state, the goal state, the sequence of operations
so far, and the final plan.

e If at the goal state, the plan is the sequence of operators so far;

e If not at the goal state:

— select an operator: (match to opn/4)

— check if not a member of list so far (use member)

— check if preconditions hold in world (i.e., preconditions list should be a subset of
world state)

— delete from world state what is no longer true (use dellist)

— add to world state what is now true (use append)

— recurse on solve to get the next state

The Prolog Code for solve/4 is:

solve(State, Goal, Plan, Plan):-
is_subset(Goal, State).

solve(State, Goal, Sofar, Plan):-
opn(0p, Preconditions, Delete, Add),
\+ member (Op, Sofar),
is_subset(Preconditions, State),
delete_list(Delete, State, Remainder),
append (Add, Remainder, NewState),
solve(NewState, Goal, [Op|Sofar], Plan).

Utility Predicates are:

is_subset ([HIT], Set):-
member (H, Set),
is_subset (T, Set).

is_subset([1, _).

delete_list([HIT], List, Final):-
remove (H, List, Remainder),
delete_list(T, Remainder, Final).

delete_list([], List, List).

remove (X, [XIT], T).

remove(X, [HIT], [HIR]):-
remove(X, T, R).

169

16.5 Prolog Practical 9: A Simple Version of STRIPS

Read the beginning of this chapter before attempting this practical.

16.5.1 Basics

The file /home/infteach/prolog/code/simstrips.pl contains a simple version of a STRIPS-
type means-ends analysis program, coded to solve the monkey and bananas problem. This
is the program discussed above.

Copy the file to your area. Have a look at the file and make sure you understand the
structure of the program. Think back to how the program is supposed to work (operators
with preconditions, add and delete lists applied to some world state); try and match this to
the program. Run the program by calling the top level goal

test (P).

The test/1 predicate has a subgoal solve/3. The first argument of solve represents the
initial state of the world; the second represents the goal state to be achieved; and the third
will become instantiated to the plan that, when applied to the initial state, will achieve the
goal state.

16.5.2 Making a Blocksworld Planner

Consider the blocksworld scenario shown in Figure 35. The configuration of objects in
Figure 35 is the initial state, and the configuration in Figure 36 is the desired goal state.
These states can be represented using a similar representation as the Monkey and Bananas
problem. By simply modifying the representation of the problem and the operators we can
modify our Monkey and Bananas planner to solve this blocksworld problem. (n.b. ignore
the shapes of the blocks: just think of them as coloured blocks that can be stacked on top
of each other in any configuration.)

1. Choose a representation for the blocksworld and use it to represent the initial state
and goal states as depicted. The closer you stick to the representation used in the
Monkey and Bananas problem the easier it will be to write the operators.

Initial State:

170

2. Compare the initial state and goal states. What operators do we need to move the
blocks so that their configuration matches the goal state? Write the new operators in
the space below, listing their preconditions, delete lists, and add lists.

[Operator] [Preconditions] [Delete list] [Add 1list]

3. Use the operators to write out a plan using the format shown in the How the World Changes
section at the start of this chapter. Start from the initial state of the blocksworld.
Apply operators one at a time, making sure that you only apply operators with pre-
conditions that match the current state. Update the state of the world using the add
and delete lists. Start again.

Write your plan out below:

171

a blue
pyramid

a green
cube

a red brick

Figure 35: The initial blocksworld state

a blue
pyramid

a red brick

a green
cube

Figure 36: The goal state

4. Now add your operators to the Prolog program. Use the format previously used by
the Monkey and Bananas operators. You do not need to change test/1 or solve/3
if you retain the same format for the operator definitions. You should be able to run

your program and generate a plan.

172

17 Answers

17.1 Chapter 3

Question 3.1 The predicate =/2 takes 2 arguments and tries to unify them

the following:

e specify whether the query submitted to Prolog succeeds or fails;

e if it succeeds, specify what is assigned to any variables.

3.1a ?- Pear = apple.
Pear = apple yes

3.1b ?- car = beetle.
no
3.1c 7- likes(beer (murphys),john) = likes(Who,What).
What = john, Who = beer (murphys) yes
3.1d ?7- £(1) = F.
f(1) = F yes
3.1e ?- name(Family) = smith.
no
3.1f ?7- times(2,2) = Four.
Four = times(2,2) yes
3.1g ?7- 5%3 = 15.
no
3.1h 7- £(X,Y) = £(P,P).
X=P Y=P yes
3.1i 7- a(X,y) = a(y,2).
X=yZ-=y yes
3.1j 7- a(X,y) = a(z,X).
no

. For each of

Question 3.2 The following Prolog program is consulted by the Prolog interpreter.

vertical(seg(point(X,Y) ,point(X,Y1))).
horizontal (seg(point(X,Y),point (X1,Y))).

What will be the outcome of each of the following queries?

173

3.2a ?7- vertical(seg(point(1,1),point(1,2))).
yes

Note that whilst the constants 1 and 2 match to variables in the program, the Prolog
interpreter only returns the values of any variables in the query — none in this case.

3.2b 7- vertical(seg(point(1,1),point(2,Y))).
no

The Y in the query is independent of the variable Y in the program. In fact, when the
program is interpreted the variables are renamed anyway to avoid any confusion.

3.2¢ ?7- horizontal(seg(point(1,1),point(2,Y))).
Y=1 yes
3.2d ?7- vertical(seg(point(2,3),P)).

d
1]

point(2,_A) yes

The second argument of point/2, in the second argument of seg, has not been instantiated
by the match, so is returned as a variable.

3.2e ?- vertical(S), horizontal(S).
S = seg(point(_B,_A),point(_B,_4)) yes

Here is an example of renaming of variables: what were X, Y, and Y1 in the program are
renamed _A and _B

Question 3.3 The following Prolog program is consulted by the Prolog interpreter.

parent(pat,jim) .
parent (pam,bob) .
parent (bob,ann) .
parent (bob,pat) .
parent(tom,1liz) .
parent (tom,bob) .

What will be the outcome of each of the following queries?

3.3a ?7- parent (bob,pat) .
yes

3.3b ?7- parent(liz,pat).
no

174

3.3c ?7- parent(tom,ben) .

no
3.3d ?7- parent(Pam,Liz) .

Liz = jim Pam = pat yes
3.3e ?7- parent(P,C) ,parent (P,C2).

C=3jim €2 = jim P = pat yes

Question 3.4 The following Prolog program is consulted by the Prolog interpreter.

colour(bl,red).
colour(b2,blue).
colour(b3,yellow).
shape (b1,square) .
shape (b2,circle).
shape (b3, square) .
size(bl,small).
size(b2,small).
size(b3,large) .

What will be the outcome of each of the following queries?

3.4a ?7- shape(b3,S).
S=square yes

3.4b ?- size(W,small).
W=b1 yes
3.4c ?- colour(R,blue).
R=b2 yes
3.4d ?7- shape(Y,square) ,colour(Y,blue).
no
3.4e ?7- size(X,large) ,colour(X,yellow).
X=c3 yes
3.4f 7- shape(BlockA,square),shape(BlockB,square) .

BlockA=bl BlockB=bl yes

3.4¢g ?7- size(b2,S),shape(b2,S).
no
3.4h ?7- colour(bl,Shape),size(X,small),shape(Y,circle).

Shape=red X=bl Y=b2 yes

175

Question 3.5 The following Prolog program is consulted by the Prolog interpreter.

film(res_dogs,dir(tarantino) ,stars(keitel,roth),1992).
film(sleepless,dir(ephron),stars(ryan,hanks),1993).
film(bambi,dir(disney) ,stars(bambi,thumper) ,b1942).
film(jur_park,dir(spielberg) ,stars(neill,dern),1993).

What will be the outcome of each of the following queries?

3.5a ?7- film(res_dogs,D,S,1992).
D=dir(tarantino) S=stars(keitel,roth) yes

3.5b ?- film(F,dir (D) ,stars(Who,hanks),Y).
F=sleepless D=ephron Who=ryan Y=1993 yes

3.5¢ ?7- film(What,Who,stars(thumper) ,b1942).
no

3.5d Write the query that would answer the question:
"Who directed Jurassic Park (jur_park)?”
and give the outcome of the query.

?7- film(jur_park,dir(Director),stars(X,Y),Z).
Director=spielberg X=neill Y=dern Z=1993 yes

3.5e Write the query that would answer the question:

”What film did hanks appear in in 1993 and who was the other star?”
and give the outcome of the query.

?- film(Film,D,stars(Other,hanks),1993).

Film=sleepless D=dir(ephron) Other=ryan

[might also try ?- film(Film,D,stars(hanks,Other),1993).
with outcome no if did not know order of stars]

17.2 Chapter 5

Question 5.1 The following Prolog program is consulted by the Prolog interpreter.

big(bear) .
big(elephant) .
small(cat) .

176

brown(bear) .

black(cat) .

grey(elephant) .
dark(Animal) : - black(Animal).
dark(Animal) :- brown(Animal).

What will be the outcome of each of the following queries?

5.1a ?7- dark(X), big(X).
X = bear yes
5.1b ?7- big(X), grey(Y).
X =bear Y = elephant yes
5.1c ?- dark(D), small(D).
D = cat yes
5.1d 7- big(Animal), black(Animal).
no
5.1e ?- small(P), black(P), dark(P).
P = cat yes

Question 5.2 The following Prolog program is consulted by the Prolog interpreter.

knows (A,B) : -
friends(A, B).

knows (A,B) : -
friends(A, C),
knows(C, B).

friends(john, alice).
friends(alice, tom).
friends(sue, john).
friends(sue, clive).
friends(fred, tom).
friends(tom, sue).

State whether the following queries succeed or fail. If a query fails, explain why.

5.2a ?- knows(alice, john).
yes

5.2b ?- knows(clive, sue).
yes

177

5.2¢ ?- knows(alice, fred).
no, loops

5.2d ?7- knows(sue, john).

no, relationship not defined
(and cannot change order of arguments).

17.3 Chapter 6

For each of the following programs, say if the query given fails or succeeds. Give any bindings
made as a consequence

Question 6.1

a:-b,c
b.
c:—-d.
d:-e
?7- a.

fails (a if b and c.
b succeeds.
c if d.
d if e.
e fails.
so d fails. so
¢ fails.
so a fails.)

Question 6.2

a:-b,c.
c:-e.
b:-f,g.
b:-n.
e.

f.

n.

7- a.

succeeds (a if b and c.
b if f and g.

178

f succeeds. g fails.
can’t redo f so f fails.
redo b. b if n.
n succeeds.
b succeeds.
c if e.
e succeeds.
C succeeds.
a succeeds.)

[Unfortunately sicstus prolog gives the same answer to both 5.1 and 5.2
here:

{EXISTENCE ERROR: g: procedure user:g/0 does not exist}
on the assumption that if you have predicates called with no facts for
them then maybe you made an error, and you probably meant to have facts
for e in 5.1 and g in 5.2. Particularly this is unfortunate because the
sicstus interpreter does not go on to prove b if n, but stops to tell
you that g does not exist. I think this is a bad design decision: you
should have got a warning here, as with singleton variables, not an
"existence error".]

Question 6.3

do(X) :-a(X),b(X).
a(X):-c(X),dX).

a(X):-e(X).
b(X):-f(X).
b(X):-c(X).
b(X):-d(X).
c(1).
c(3).
d(3).
d(2).
e(2).
£f(1).
6.3a ?- do(1). no

(do(1) if a(1) and b(1)
a(1) if c(1) and d(1)
c(1) succeeds
d(1) fails
redo a(1l) if e(1)
e(1) fails
a(1l) fails
do(1) fails)

179

6.3b ?7- do(2). yes
(do(2) if a(2) and b(2)
a(2) if c(2) and d(2)
c(2) fails
redo a(2) if e(2)
e(2) succeeds
a(2) succeeds
b(2) if £(2)
f(2) fails
redo b(2) if c(2)
c(2) fails
redo b(2) if d(2)
d(2) succeeds
b succeeds
do(2) succeeds)

6.3c ?7- do(3). yes
(do(3) if a(3) and b(3)
a(3) if c¢(3) and d(3)
c(8) succeeds
d(3) succeeds
a(3) succeeds
b(3) if £(3)
£(3) fails
redo b(3) if c(3)
c(3) succeeds
b(3) succeeds
do(3) succeeds)

6.3d ?7- do(A). A =3 yes
(do(A) if a(A) and b(A)
a(A) if c(A) and d(A)
c(1) succeeds
d(1) fails
redo c(A)
c(8) succeeds
d(3) succeeds
a(3) succeeds
b(3) if £(3)
£(3) fails
redo b(3) if c(3)
c(8) succeeds
b(3) succeeds
do(3) succeeds)

180

17.4 Chapter 8

Question 8.1 How many elements are there in each of the following list structures?

8.1a la, [a,[a,[all]] =2
8.1b [1,2,3,1,2,3,1,2,3] =9
8.1c [a(X), b({Y,Z2), c, X1 =4
8.1d [[sum(1,2)], [sum(3,4)], [sum(4,6)]] =3

8.1e lc, [d,[x1], [£(s)], [r,h,alt)], [[lalll]

5

[Note: extra spaces used to illustrate each element]

Question 8.2 The predicate =/2 takes 2 arguments and tries to unify them. For each of

the following:

e specify whether the query submitted to Prolog succeeds or fails;
e if it succeeds, specify what is assigned to any variables;

e if it fails, explain why it fails.

8.2a 7- [A,B,C,D] = [a,b,c]. no lists are different length.
8.2b ?- bar([1,2,3]) = bar(A). yes A =1[1,2,3].

8.2¢ 7- [X,[] = [X]. no lists are different length.
8.2d 7- [X,YIlZ] = [a,b,c,d]. yes X=a, Y=b, Z=[c,d].

8.2¢ 7- [1,X,X] = [A,A,2]. no A bound to 1, cannot then

be bound to 2.

8.2f ?- likes(Y,a) = likes(X,Y). yes X=a, Y=a.
(X and Y share)

8.2g 7- [foo(a,b),a,b] = [X|Y]. yes X=foo(a,b), Y=[a,b].

8.2nh 7- [b,Y] = [Y,a]. no Y cannot be bound to b and a.
8.2i1 ?7- [HIT] = [red,blue,b(X,Y)]. yes H=red, T=[blue,b(X,Y)].

8.2 7- [1,[a,b],2] = [[A,B],X,Y]. o lists cannot unify with atoms.

181

8.2k 7- test(a,L) = test(E,[b,c,d]). yes E=a, L =[b,c,d]
8.21 7- [[a,[v]],C] = [C,D]. yes C = [a,[b]], D =[a,[b]l]
8.2m 7- [fred|T]=[H| [sue, john]]. yes H = fred T = [sue, john]

Question 8.3 Imagine that this program is consulted by the Prolog interpreter:

foo (L1, [1).

foo([HIT], [XIY]):-
H =X,
foo(T,Y).

[Note: this program tests if two lists unify by testing if the heads unify then recursing on
the tails]

What will be the outcome of each of the following queries?

8.3a 7- foo([a,b,c], A). yes A=[a,b,c].
8.3b 7?- foo(lc,a,t]l, [c,u,t]). no

8.3¢ ?7- foo(X, [b,0,0]). yes X=[b,0,0].
8.3d ?- foo([plIL]l, [Fl[a,bl]). yes F=p, L=[a,Db].
8.3e 7- foo([X,Y], [d,o0,gl). no

17.5 Chapter 9

Question 9.1 The predicate member/2 succeeds if the first argument matches an element
of the list represented by the second argument.

e.g. ?- member(1,[2,3,1,4]). yes
member/2 is defined as: 1. member(E1l, [E1IT]).
2. member (E1l, [HIT]) :-
member (E1,T) .

For each of the following:

e specify whether the query submitted to Prolog succeeds or fails;

182

e if it succeeds, specify what is assigned to any variables.

9.1a ?- member(a,[c,a,b]l). yes
9.1b ?- member(a,[d,o,gl). no
9.1c¢ 7- member(one, [one,three,one,four]). yes
9.1d ?- member(X, [c,a,t]). X=c yes
9.1e ?- member(tom,[[jo,alan], [tom,annel]). no

9.1f Complete the AND/OR tree below which represents the execution of the query:

Tree:
?- member(a, [b,r,e,a,d]). yes
/ \
1/ 2\
a=b / member (a, [r,e,a,d])
fails / \
1/ \ 2
a=r member(a, [e,a,d])
fails / \
1/ \2
a=e member (a, [a,d])
/
1/
succeeds
Trace:

Call: member(a,[b,r,e,a,d]) ?
Call: member(a,[r,e,a,d]) ?
Call: member(a,[e,a,d]) ?
Call: member(a,[a,d]) ?

Exit: member(a,[a,d]) ?

Exit: member(a, [e,a,d]) ?
Exit: member(a, [r,e,a,d]) ?
Exit: member(a, [b,r,e,a,d]) ?

= N WD D wN
=N W DWW -

yes
Question 9.2 The predicate no_cons/1 succeeds if all elements of the list represented by
the one argument are vowels (as specified by vowel/1).

e.g. ?- no_cons([a,e,i]).
yes

183

? no_cons([a,b,c]).
no

no_cons/1 is defined as:

1. no_cons([]).

2. no_cons([HIT]):-
vowel(H),
no_cons(T) .

. vowel(a).
. vowel(e).
. vowel(i).
. vowel(o).
. vowel(u).

N O O W

For each of the following:

e specify whether the query submitted to Prolog succeeds or fails;

e if it succeeds, specify what is assigned to any variables.

9.2a ?- no_cons([a,a,e,i]). yes

9.2b ?- no_cons([A,e,e]). A=a yes

9.2c Complete the AND/OR tree below which represents the execution of the query:

184

?- no_cons([a,e,i]).

/ I\
1/ 2| __\ H/a T/ [e,1i]
/ | \
a=[] vowel(a) no_cons([e,i])
fails | I\
3| 21__\ Hi/e
| | \
succeeds vowel(e) no_cons([i])
| I\
4| 21__\

I I \

succeeds vowel(i) mno_cons([])
| |
5] 1]
| |

succeeds succeeds

yes

T1/[i]

H2/i T2/ (1

Question 9.3 The predicate max/2 succeeds if the first argument is a list of numbers and

second argument unifies with the maximum value in that list.

e.g. ?- max([2,4,6,8],M).
M =38
yes

max/2 is defined as:

0. max([H|T],Max) :-
max (T,H,Max) .

1. max([HIT],Temp,Max) :-
H>Temp,
max(T,H,Max) .

2. max([H|T],Temp,Max) : -
max (T, Temp,Max) .

3. max([],Finalmax,Finalmax) .

9.3 Complete the AND/OR tree below which represents the execution of the query:

185

?- max([2,1,4,3],Ans).
|
0l H/2 T/[1,4,3]
|
max([1,4,3],2,Ans)

/ \
1/ 2\ H1/1 Temp/2 T1/[4,3]
/ \
1>2 max([4,3],2,Ans)
fails I\
11--\ H2/4 Templ/2 T2/[3]
| \
4>2 max([3],4,Ans)
succeeds I\
11 2\ H3/3 Temp2/4 T3/[]
| \
3>4 max([],4,Ans)
fails /I\
1/ 2| 3\ Finalmax/4
/ | \
fails fails succeeds
Ans=4
Ans = 4
yes

Question 9.4 The predicate prlist/1 is supposed to write out the elements of a list struc-
ture, regardless of the levels of embedding that are present in the list.

e.g. intended behaviour:
?- prlist([a,b,[c,d,el,f, [g]]).
abcdefg
yes

Instead, the predicate as defined below has the following behaviour:

?7- prlist([a,bl).

ab[]

yes

?- prlist([a,b,[c,d]l,el).
abcd[Jel]

yes

prlist/2 is defined as:

1. prlist([HIT]):-

186

prlist(H),

prlist(T).
2. prlist(X):-

write(X) .

Explain why this predicate produces this behaviour (instead of the intended behaviour),
using an AND/OR tree or a trace in your explanation.

Tree:
7- prlist([a,bl).
/===\
1/ \
prlist(a) prlist([b])
/] /=—\
1/ |2 1/ \
fails write(a) prlist(b) prlist([])
/ \ / \
1/ \2 /1 \2
fails write(b) fails write([])
ab[]

The problem here is that whatever its value, the head and tail of the list on each recursion
are prlisted, and when the head is no longer a list it is written. So the empty list also gets
written. An extra clause, prlist([]) is needed to prevent this.

Question 9.5 The predicate checkvowels takes a list representing a word, checks each
letter to see whether it is a vowel, and if it is it writes out the vowel.

checkvowels([H|T]) : -
vowel (H),
write(H), nl,
checkvowels(T).

checkvowels([H|T]) : -
checkvowels(T) .

checkvowels([]).

vowel(a).
vowel(e).
vowel(i).
vowel(o) .
vowel (u) .

187

e.g. ?- checkvowels([c,a,t,i]).
a
i
yes

9.5a Using this as a model, write a predicate results/1 that takes a list of names, checks
whether each is a pass (using a predicate that you also must define, pass/1) and writes out
the names if they pass.

For example, the following query:
?7- results([tom,bob,sue, jane]) .
should give the output:

bob
sue
yes

Solution:

pass(bob) .
pass(sue) .
results([HI|T]):-
pass(H), write(H), nl,
results(T).
results([HIT]) :-
results(T).

results([]).

9.5b Modify this program so that instead of 'writing out’ the name of each person who passes
it should output a list of them.

7- results2([tom,bob,sue, jane] ,Passlist).
Passlist = [bob,suel]
yes

results2([H|T], [HIP1]) :-
pass(H),
results2(T,P1).

results2([H|T],P1) :-
results2(T,P1).

results2([1,[1).

188

17.6 Chapter 10

Question 10.1 The predicate delete/3 succeeds if deleting the element represented by the
first argument, from the list represented by the second argument, results in a list represented
by the third argument.

e.g. ?7- delete(a,[a,p,p,1l,e]l,A).
A=[p,p,1,el
yes
delete/3 is defined as:
1. delete(El,[E1IT],T).

2. delete(El, [HIT], [HINT]) :-
delete(E1l,T,NT).

For each of the following:

e specify whether the query submitted to Prolog succeeds or fails;

e if it succeeds, specify what is assigned to any variables.

10.1a ?7- delete(X, [pat,john,paul] ,Ans). X = pat Ans = [john,paul] vyes

10.1b ?- delete(A,L,[t,0,pl). A= _A L = [_A,t,o,p] yes
or L = [A,t,0,p]

10.1c ?- delete(a,[c,a,b],Ans). Ans = [c,b] yes
10.1d ?- delete(e,[d,o0,g]l,P). no
10.1e 7- delete(e,[f,e,e,t],Ans). Ans = [f,e,t] yes

Question 10.2 The predicate deleteall /3 succeeds if deleting all occurrences of the element
represented by the first argument from the list represented by the second argument results
in a list represented by the third argument.

e.g. ?7- delete(p, [a,p,p,1,el,A). A=[a,1,e] yes
deleteall/3 is defined as: 1. deleteall(E1,[]1,[1).
2. deleteall(El, [E1|T],NT):-
deleteall(E1l,T,NT).
3. deleteall(El1l, [HIT], [HINT]):-
deleteall(E1l,T,NT).

For each of the following:

189

e specify whether the query submitted to Prolog succeeds or fails;

e if it succeeds, specify what is assigned to any variables.

10.2a 7?7- deleteall(e,[f,e,e,t],Ans). Ans = [f,t] yes

10.2b 7- deleteall(p,[d,o,gl,X). X = [d,o,g] yes

10.2¢ Complete the AND/OR tree below which represents the execution of the query:

?- deleteall(e,[f,e,e,t],Ans).

/ | \
1/ [2 3 \ Ans/[fINT]
/ | \
[O=[f,e,e,t] e=f deleteall(e, [e,e,t] ,NT)
fails fails / \
/ \
1/ 2\ NT/NT2
/ \
[1=[e,e,t] deleteall(e, [e,t],NT2)
fails
Solution:
Tree:
?- deleteall(e,[f,e,e,t],Ans). Ans= [f,t] yes
/ | \
1/ 2 \ 3 Ans/[fINT] = [f,t]
[I=[f,e,e,t] e=f deleteall(e, [e,e,t],NT)
fails fails / I
/ |
1/ 2| NT/NT2 = [t]
[1=[e,e,t] deleteall(e,[e,t],NT2)
fails / \
/ \
/1 \ 2 NT2/NT3 = [t]
[1=[e,t] deleteall(e, [t],NT3)
fails /1 N\
/ | \
1/ 21 \ 3 NT3/[tINT4] = [t]
[1=[t] e=t deleteall(e,[],NT4)
fails fails |
|
|1 NT4/[]
succeeds
Trace:

190

1 Call: deleteall(e,[f,e,e,t],_115) ?
2 Call: deleteall(e,[e,e,t],_288) ?

3 Call: deleteall(e,[e,t],_288) 7

4 Call: deleteall(e,[t],_288) 7

5 Call: deleteall(e,[]1,_626) ?

5 Exit: deleteall(e,[],[]) ?

4 Exit: deleteall(e,[t],[t]) ?

3 Exit: deleteall(e,[e,t],[t]) 7

2 Exit: deleteall(e,[e,e,t],[t]) ?

1 Exit: deleteall(e,[f,e,e,t],[f,t]) ?
[f,t] ?

RN WL OO WN -

10.2d Suppose that the predicate deleteall/3 is defined incorrectly as:

1. delall(E,[]1,[]).

2. delall(E,[E|T],Y):-
delall(E,T,Y).

3. delall(E, [H|T],Y):-
delall(E,T,[H|Y]).

resulting in the behaviour:

i. 7?- delall(e,[f,e,e,t],Ans).
no

However, the following query succeeds, as intended:
ii. ?- delall(a,[a,a,al,Ans).
Ans=[]

yes

Explain why the program does not give the intended answer to query i. using an AND/OR
tree or a trace to illustrate your answer.

N
|

delall(e, [f,e,e,t] ,Ans).

Call: delall(e, [f,e,e,t],_95) 7
Call: delall(e,[e,e,t],[fl_95]1) ?
Call: delall(e,[e,t],[fl_95]) ?
Call: delall(e,[t],[f[_95]) ?
Call: delall(e,[]1,[t,f1_95]1) 7
Fail: delall(e,[]1,[t,f1_95]) 7
Fail: delall(e, [t],[f]_95]) 7
Call: delall(e,[t],[e,f]_95]) 7
Call: delall(e,[1,[t,e,f]_95]) 7
Fail: delall(e,[],[t,e,f]|_95]) 7
Fail: delall(e,[t],[e,f|_95]) ?

+ 4+ + + + + F + o+ o+ o+
DO D OO W e
DO D OO W e

191

+ 3 3 Fail: delall(e,[e,t],[f]_95]1) ?

+ 3 3 Call: delall(e,[e,t]l,[e,f1_951) ?
+ 4 4 Call: delall(e,[t],[e,f]_951) ?

+ 5 5 Call: delall(e,[],[t,e,f|_95]) ?

+ 5 5 Fail: delall(e,[],[t,e,f]_95]) ?

+ 4 4 Fail: delall(e,[t],[e,f]_95]) ?

+ 4 4 Call: delall(e,[t],[e,e,f]_951) ?
+5 5 Call: delall(e,[],[t,e,e,f]_95]) 7
+ 5 5 Fail: delall(e,[]1,[t,e,e,f|_95]) 7
+ 4 4 Fail: delall(e,[t],[e,e,f|_95]) 7
+ 3 3 Fail: delall(e,[e,t],[e,f|_95]) ?
+ 2 2 Fail: delall(e,[e,e,t],[f1_951) ?
+ 1 1 Fail: delall(e,[f,e,e,t],_95) ?

no

{trace}

| ?- delall(a,[a,a,al,Ans).

1 1 Call: delall(a,[a,a,al,_89) 7
Call: delall(a,[a,a],_89) 7
Call: delall(a,[a],_89) 7
Call: delall(a,[],_89) ?
Exit: delall(a,[1,[1) 7

Exit: delall(a,[al,[1) ?
Exit: delall(a,[a,al,[1) ?
Exit: delall(a,[a,a,a]l,[]) ?

+ 4+ + + + + + 4+
N W W N
N WO W N

Ans =[] ?
yes

Builds in the body rather than the head of the clause.

Question 10.3 The predicate repall/4 succeeds if replacing all occurrences of the element
represented by the first argument, by the element represented by the second argument, in the
list represented by the third argument, results in a list represented by the fourth argument.

e.g. ?7- repall(p,b,[a,p,p,1l,el,A).
A=[a,b,b,1,e]
yes

repall/4 is defined as:
1. repall(El,Rel,[1,[1).
2. repall(El,Rel, [E1|T], [Rel|NT]):-

repall(El,Rel,T,NT).
3. repall(El,Rel, [H|T], [HINT]) :-

192

repall(E1,Rel,T,NT).

For each of the following:

e specify whether the query submitted to Prolog succeeds or fails;

e if it succeeds, specify what is assigned to any variables.

10.3a ?- repall(e,a,[f,e,a,t],Ans). Ans [f,a,a,t] yes

10.3b ?- repall(P,r,[s,o,u,p]l,Ans). Ans [r,o,u,p] P =s yes

Question 10.4 The predicate whowants/3 has three arguments. The first is intended to
represent a type of food; the second a list of people; and the third another list, representing
those people on the 2nd argument list who want the type of food specifed in the 1st argument
(where want /2 is defined separately, with two arguments representing who wants what food).

e.g. ?7- whowants(beans, [jo,tom,ann],Who) .
Who = [jo,ann]
yes

1. whowants(Food, [Name|Rest], [Name|Others]) :-
wants (Name,Food) ,
whowants (Food,Rest,0thers) .

2. whowants(Food, [Name|Rest] ,Others) :-
whowants (Food,Rest,Others) .

3. whowants(Food, [1,[1).

. wants(jo,chips).

. wants(jo,beans) .

. wants(jo,eggs) .

. wants(ann,beans) .

. wants(ann,bacon) .

. wants(tom,eggs) .
10. wants(tom,chips).
11. wants(rick,bacon).

O 00 N O O b

10.4a Give either the AND/OR tree or a trace which represents the execution of the query:

7- whowants (beans, [jo,tom,ann],Who) .

/\
1/-—-—-\ Food/beans Name/jo Rest/[tom,ann] Who/[jol|Others]

/ \

193

wants(jo,beans) whowants(beans, [tom,ann],Others)
| / N\
5] 1/ 2\ Namel/tom Rest1l/[ann]
| / \

succeeds wants(tom,beans) whowants(beans, [ann],0Others)
| /\
fails 1/---=\ Name2/ann Rest2/[] Others/[ann|Othersi]
/ \

wants (ann,beans) whowants (beans, [],0thers1)

| /1\
71 1/ 2] 3\ Othersi1/[]

| / | \

succeeds fails fails succeeds

Othersi=[]

Who=[jo,ann]
yes

| ?- trace, whowants(beans, [jo,tom,ann],Who).

+1 1 Call: whowants(beans,[jo,tom,ann],_75) ?
+ 2 2 Call: wants(jo,beans) 7

+ 2 2 Exit: wants(jo,beans) 7

+ 3 2 Call: whowants(beans, [tom,ann],_681) ?

+ 4 3 Call: wants(tom,beans) ?

+ 4 3 Fail: wants(tom,beans) 7

+ 4 3 Call: whowants(beans, [ann],_681) ?

+ 5 4 Call: wants(ann,beans) 7

+ 5 4 Exit: wants(ann,beans) 7

+ 6 4 Call: whowants(beans,[],_1438) 7

+ 6 4 Exit: whowants(beans,[]1,[]1) 7

+ 4 3 Exit: whowants(beans,[ann],[ann]) 7

+ 3 2 Exit: whowants(beans, [tom,ann], [ann]) ?
+ 1 1 Exit: whowants(beans,[jo,tom,ann], [jo,ann]) ?
Who = [jo,ann] 7

yes

For each of the following:

e specify whether the query submitted to Prolog succeeds or fails;

e if it succeeds, specify what is assigned to any variables.

10.4b ?7- whowants(chips, [ann,rick],Ans). Ans = [1 yes
10.4¢ ?- whowants(bacon, [tom,ann] ,A). A = [ann].
10.4d ?7- whowants(eggs,Diners,Ans). fails loops

194

| ?- trace,whowants(eggs,Diners,Ans).

+1 1 Call: whowants(eggs,_53,_79) 7

+ 2 2 Call: wants(_677,eggs) 7

+ 2 2 Exit: wants(jo,eggs) 7

+ 3 2 Call: whowants(eggs,_678,_676) 7
+4 3 Call: wants(_1232,eggs) 7

+ 4 3 Exit: wants(jo,eggs) 7

+ 5 3 Call: whowants(eggs,_1233,_1231) 7
+6 4 Call: wants(_1787,eggs) 7

+ 6 4 Exit: wants(jo,eggs) 7

+ 7 4 Call: whowants(eggs,_1788,_1786) 7
+ 8 5 Call: wants(_2342,eggs) 7

+ 8 5 Exit: wants(jo,eggs) 7

10.4e Using whowants/3 as a model, write a predicate overage/3 that takes an age limit and
a list of names, checks the age of each person named (using a predicate age/2) and returns
a list of names of those people who are over the age limit.

For example, the query below should give the output shown:

7- overage(18,[sally,alice,bill],Ans).
Ans=[alice,bill]

yes
where:
age(sally,15).
age (mark,26) .
age(bill,20).
age(alice,37).
Solution:

overage (L, [H|T], [H|Y]) :-
age(H,X),
L,
overage(L,T,Y).
overage (L, [H|T],Y) :-
overage(L,T,Y).
overage (L, [1,[1).

10.4f If the predicate whowants/3 had been (incorrectly) defined as:

1. whowants(Food, [Name|Rest], [Name|Others]) :-
wants (Name,Food) ,
whowants (Food,Rest,0Others) .

195

2. whowants(Food, [Name|Rest] ,0thers) :-
whowants (Food,Rest,Others) .

(i.e. no 3rd clause) predict the outcome of the query in 10.4c.
?- whowants(bacon, [tom,ann],A).

and explain why this is the case, using an AND/OR tree or a trace in your explanation.

| ?- trace, whowants(bacon, [tom,ann],A).

+ 1 1 Call: whowants(bacon, [tom,ann],_69) 7

+ 2 2 Call: wants(tom,bacon) ?

+ 2 2 Fail: wants(tom,bacon) 7

+ 2 2 Call: whowants(bacon, [ann],_69) ?

+ 3 3 Call: wants(ann,bacon) 7

+ 3 3 Exit: wants(ann,bacon) 7

+ 4 3 Call: whowants(bacon,[],_868) ?

+ 4 3 Fail: whowants(bacon,[],_868) ?

+ 3 3 Redo: wants(ann,bacon) 7

+ 3 3 Fail: wants(ann,bacon) 7

+ 3 3 Call: whowants(bacon,[],_69) ?

+ 3 3 Fail: whowants(bacon,[],_69) ?

+ 2 2 Fail: whowants(bacon, [ann],_69) ?

+ 1 1 Fail: whowants(bacon, [tom,ann],_69) ?
no

Fails because there is now no clause to match the empty list.

Question 10.5 The predicate deletefirst/3 is supposed to succeed if deleting the element
represented by the first argument, from the list represented by the second argument, results
in a list represented by the third argument, as delete/3 defined as above (B.)

e.g. intended behaviour:
?- deletefirst(i,[b,i,b,s],A).
A=[b,b,s]
yes

Instead, it produces the following behaviour:
?7- deletefirst(i,[b,i,b,s],A).
A=[s]
yes

?- deletefirst(a,[b,a,1,1],X).
no

196

deletefirst/3 is defined as:

1. deletefirst(E1l,[E1|T],T).
2. deletefirst(El, [H|T],NT) :-
deletefirst(E1l,T, [HINT]).

Explain why this predicate produces this behaviour (instead of the intended behaviour),
using an AND/OR tree or a trace in your explanation.

Solution:
Tree:
?7- deletefirst(i,[b,i,b,s],A). A=[s] yes
/ |
/1 |2 El/i
T/[i,b,s]
/ I NT/A H/b
i=b deletefirst(i,[i,b,s], [blA]).
fails | T/[b,s]
| 1 A/[s]
i=i
[b,s]=[blAl
succeeds
Trace:

| ?- deletefirst(i,[b,i,b,s],A).
1 1 Call: deletefirst(i,[b,i,b,s],_103) ?
2 2 Call: deletefirst(i,[i,b,s],[bl_103]) 7
2 2 Exit: deletefirst(i,[i,b,s],[b,s]) ?
1 1 Exit: deletefirst(i,[b,i,b,s],[s]) ?

A=1[s]?7 yes

Matches [b—X] from first match of [b—[i,b,s,]] to [b,s| left after matching i to [i,b,s]. - so
only works by coincidence of 2 occurences here.

{trace}
| ?- deletefirst(a,[b,a,1,1],X).

1 1 Call: deletefirst(a,[b,a,1,1],_103) ?
Call: deletefirst(a,[a,1,1],[b]_103]) ?
Call: deletefirst(a,[1,1],[a,b]_103]) ?
Call: deletefirst(a,[1],[1,a,b|_103]) ?
Call: deletefirst(a,[],[1,1,a,b|_103]) 7
Fail: deletefirst(a,[],[1,1,a,b|_103]) 7
Fail: deletefirst(a,[1],[1,a,b|_103]) 7
Fail: deletefirst(a,[1,1],[a,b]|_103]) 7

W 01O WN
W 01O WwWN

197

2 2 Fail: deletefirst(a,[a,1,1],[bl_103]) 7
1 1 Fail: deletefirst(a,[b,a,1,1],_103) 7
no
No match here.

The problem is that the head of the list that is supposed to be constructed is copied onto
the front of the list that is called in the third argument of the recursive call (in the body
of the clause), rather than in the query itself (in the head of the clause). So it gets built
up as the program recurses, the program then fails when it cannot split the empty list. The
variable represented by Ans does not get instantiated normally in this version, but with the
call of:

?- deletefirst(i,[b,i,b,s],Ans)

co-incidentally at one point the program matches [b,s] to [b—Ans], causing Ans to be in-
stantiated to [s].

198

References

[Bratko 01] I. Bratko. Prolog Programming for Artificial Intelligence (3rd edi-
tion). Addison Wesley, 2001. ISBN 0-201-41606-9.

[Clocksin & Mellish 03] W.F. Clocksin and C.S. Mellish. Programming in Prolog: Using the
ISO Standard (5th edition). Springer-Verlag, 2003. ISBN 0-387-
58350-5.

[Sterling & Shapiro 94] L. Sterling and E. Shapiro. The Art of Prolog (Second edition). MIT
Press, 1994. ISBN 0-262-19338-8.

199

