3
D Prolog Fundamentals

l Artificial Intelligence Programming

D In Prolog

Lecture 2

r’*r 27/09/04

|] . 27/09/04 AIPP Lecture 2: Prolog Fundamentals

@ Anatomy of a Program

« Last week | told you that Prolog programs are made
' ’ up of facts and rules.

« A fact asserts some property of an object, or relation
I between two or more objects.

e.g. parent (jJane,alan) .

(f-\ Can be read as “Jane is the parent of Alan.”

* Rules allow us to infer that a property or relationship
holds based on preconditions.

F‘F €.g. parent (X,Y) = mother(X,Y).

= “Person X is the parent of person Y if X is Y's

ther.”
A

] 27/09/04 AIPP Lecture 2: Prolog Fundamentals 2

Predicate Definitions

« Both facts and rules are predicate definitions.

s

* ‘Predicate’is the name given to the word
occurring before the bracket in a fact or rule:

parent|(jane,alan) .

" V
Predicate name

a

* By defining a predicate you are specifying
which information needs to be known for the
property denoted by the predicate to be true.

1

DA D

|

1 27/09/04 AIPP Lecture 2: Prolog Fundamentals 3

Clauses

* Predicate definitions consist of clauses.
= An individual definition (whether it be a fact or rule).

e.g. mother (jane,alan) . = Fact
parent (P1,P2) := mother (P1,P2). =Rule
h(lad body

A clause consists of a head

* and sometimes a body.
— Facts don't have a body because they are always

r] true.

] 27/09/04 AIPP Lecture 2: Prolog Fundamentals 4

UL UG

)
!

ULUG

)
Rl

|

Arguments

A predicate head consists of a predicate name and
sometimes some arguments contained within
brackets and separated by commas.

mother (Jane,alan) .

/ NS

Predicate name Arguments

A body can be made up of any number of subgoals
(calls to other predicates) and terms.

Arguments also consist of terms, which can be:
— Constants e.g. jane,

— Variables e.g. Person1, or

— Compound terms (explained in later lectures).

27/09/04 AIPP Lecture 2: Prolog Fundamentals 5

@ Terms: Constants

Constants can either be:

() « Numbers:

— integers are the usual form (e.g. 1, 0, -1, etc), but
I — floating-point numbers can also be used (e.g. 3.0E7)

« Symbolic (non-numeric) constants:

(— always start with a lower case alphabetic character and
contain any mixture of letters, digits, and underscores

but no spaces, punctuation, or an initial capital).

(
r\r « e.g. abg, big_long_constant, x4_3t).

i+ String constants:
r] — are anything between single quotes e.g. ‘Like this’.

] 27/09/04 AIPP Lecture 2: Prolog Fundamentals 6

Terms: Variables

Variables always start with an upper case
alphabetic character or an underscore.

« Other than the first character they can be made up
of any mixture of letters, digits, and underscores.

€.J. X, ABC, 89twod, very long variable

« There are no “types” for variables (or constants) — a
variable can take any value.

All Prolog variables have a “local” scope:

— they only keep the same value within a clause; the same
variable used outside of a clause does not inherit the value
] (this would be a “global” scope).

OLOG

)
Rl

1 27/09/04 AIPP Lecture 2: Prolog Fundamentals 7

) Naming tips
. * Use real English when naming predicates,
(‘ constants, and variables.
S e.g. “John wants to help Somebody.”
Could be: wants (john, to _help, Somebody) .
Not: x87g(j,_789).

Use a Verb Subject Object structure:
wants (john, to help).

BUT do not assume Prolog Understands the

meaning of your chosen names!

— You create meaning by specifying the body (i.e.

-

preconditions) of a clause.

)
Rl

] 27/09/04 AIPP Lecture 2: Prolog Fundamentals

C_D Using predicate definitions

€.J. | ?- write(’'What is your name?’), nl, read(X),
write(‘Hello

(‘) Command line programming is tedious

‘), write(X

* We can define predicates to automate

commands:

‘ ’ greetings: -
write (*What is your name?’),
nl,

3
(—\[read (X),
| write (‘Hello V'),

write (X) .

r] I 27/09/04

Prolog Code

| ?- greetings.
What 1s your nat

| =

Hel
X:
yes

tim.
lo tim
tim ?

ne?

AIPP Lecture 2: Prolog Fundamentals

Terminal

Arity

- greetings IS a predicate with no arguments.

 The number of arguments a predicate has is
called its arity.

— The arity of greetings is zero = greetings/0

* The behaviour of predicates can be made
more specific by including more arguments.

— greetings (hamish) = greetings/1

ULUG

~ * The predicate can then behave differently
depending on the arguments passed to it.

)
—

] 27/09/04 AIPP Lecture 2: Prolog Fundamentals 10

Using multiple clauses

 Different clauses can be used to deal with
different arguments.

greet (hamish) : -
write (‘How are you doin, pal?’).

greet (amelia) : -

write (‘Awfully nice to see you!’).

= “Greet Hamish or Amelia” = a disjunction of goals.

ULUG

| ?- greet (hamish). | ?- greet(amelia).
How are you doin, pal? Awfully nice to see you!
yes yes

« Clauses are tried in order from the top of the file.
] * The first clause to match succeeds (= yes).

)
Rl

] 27/09/04 AIPP Lecture 2: Prolog Fundamentals 11

ULUG

)
Rl

Variables in Questions

We can call greet /1 with a variable in the question.
A variable will match any head of greet /1.

| ?- greet (Anybody) .
How are you doin, pal?
Anybody = hamish?

ves

The question first matches the clause closest to the
top of the file.

The variable is instantiated (i.e. bound) to the value
‘hamish’.

As the variable was in the question it is passed back
to the terminal (anybody = hamish?).

27/09/04 AIPP Lecture 2: Prolog Fundamentals 12

Re-trying Goals

 When a question is asked with a variable as an
argument (e.g. greet (Anybody) .) we can ask the

Prolog interpreter for multiple answers using: ;

| ?- greet (Anybody) .

How are you doin, pal?

ULUG

Anybody = hamish? ; < “Redo that match.”
Anybody = amelia? ; < “Redo that match.”
no < “Fail as no more matches.”

This fails the last clause used and searches down
the program for another that matches.

« RETURN = accept the match
] . ; =reject that match

)
R

] 27/09/04 AIPP Lecture 2: Prolog Fundamentals 13

UL UG

I

))

Variable clause head.

If greet /1 is called with a constant other than
hamish or amelia it will fail (return no).

We can create a default case that always succeeds by
writing a clause with a variable as the head argument.

greet (Anybody) : - | 27— greet (bob) .
write (‘Hullo V), Hullo bob.

write (Anybody) . yes

Any call to greet /1 will unify (i.e. match)
greet (Anybody).

Once the terms unify the variable is instantiated to the
value of the argument (e.g. bob).

27/09/04 AIPP Lecture 2: Prolog Fundamentals 14

Ordering of clauses

* The order of multiple clauses is important.

greet (Anybody) : -
write('Hullo '), write (Anybody).

(s

greet (hamish) : -

write ('How are you doin, pal?').

greet (amelia) : -

write('Awfully nice to see you!').

a

| ?- greet (hamish).
Hullo hamish?
yes

* The most specific clause should always be at the top.
« (General clauses (containing variables) at the bottom.

)
!

] 27/09/04 AIPP Lecture 2: Prolog Fundamentals 15

Ordering of clauses

* The order of multiple clauses is important.

| ?- greet (hamish).
How are you doin,
pal?.

yes

(s

greet (hamish) : -

write ('How are you doin, pal?').

greet (amelia) : -

write('Awfully nice to see you!').

a

greet (Anybody) : -
write('Hullo '), write (Anybody).

« The most specific clause should always be at the top.

« (General clauses (containing variables) at the bottom.

)
Rl

] 27/09/04 AIPP Lecture 2: Prolog Fundamentals 16

Unification

* When two terms match we say that they unify.
— Their structures and arguments are compatible.
This can be checked using =/2

| 7= loves (john,X) = loves(Y,mary).

X = mary, <€ unification leads to instantiation
Y = john? <€

0L 0G

yes Terms that unify Outcome
fred = fred. yes.
Terms that don’t unify ‘Hey you’ = ‘Hey you'. yes
\ fred = jim. fred=X. X=fred.
r r_‘ ‘Hey you’ = ‘Hey me’. X=Y. Y =X
frou(frou) = f(frou). foo(X) = foo(bar). X=bar.
: foo(bar) = foo(bar,bar). foo(N,N) = foo(bar,X). N=bar, X=bar.
r] foo(N,N) = foo(bar,rab). foo(foo(bar)) = foo(X) X = foo(bar)

1 27/09/04 AIPP Lecture 2: Prolog Fundamentals 17

ULUG

!

DA D

Asking questions of the database

We can ask about facts directly:

| 7= mother (X,alan) .
X = jane?

Yes

Or we can define rules that prove
If a property or relationship holds
given the facts currently in the
database.

| 7= parent (Jane, X) .
X = alan?

ves

mother (jane,alan) .

father (john,alan) .

parent (Mum,Child) : -
mother (Mum, Child) .

parent (Dad,Child) : -
father (Dad,Child) .

27/09/04 AIPP Lecture 2: Prolog Fundamentals 18

e

a

-

!

))

Summary

A Prolog program consists of predicate definitions.

A predicate denotes a property or relationship between objects.
Definitions consist of clauses.

A clause has a head and a body (Rule) or just a head (Fact).

A head consists of a predicate name and arguments.

A clause body consists of a conjunction of terms.

Terms can be constants, variables, or compound terms.

We can set our program goals by typing a command that unifies
with a clause head.

A goal unifies with clause heads in order (top down).
Unification leads to the instantiation of variables to values.

If any variables in the initial goal become instantiated this is
reported back to the user.

27/09/04 AIPP Lecture 2: Prolog Fundamentals 19

