
27/09/04 AIPP Lecture 2: Prolog Fundamentals 1

Prolog Fundamentals

Artificial Intelligence Programming
in Prolog
Lecture 2
27/09/04

27/09/04 AIPP Lecture 2: Prolog Fundamentals 2

Anatomy of a Program
• Last week I told you that Prolog programs are made

up of facts and rules.
• A fact asserts some property of an object, or relation

between two or more objects.
e.g. parent(jane,alan).

Can be read as “Jane is the parent of Alan.”
• Rules allow us to infer that a property or relationship

holds based on preconditions.
e.g. parent(X,Y) :- mother(X,Y).

= “Person X is the parent of person Y if X is Y’s
mother.”

27/09/04 AIPP Lecture 2: Prolog Fundamentals 3

• Both facts and rules are predicate definitions.

• ‘Predicate’ is the name given to the word
occurring before the bracket in a fact or rule:

parent(jane,alan).

• By defining a predicate you are specifying
which information needs to be known for the
property denoted by the predicate to be true.

Predicate Definitions

Predicate name

27/09/04 AIPP Lecture 2: Prolog Fundamentals 4

Clauses
• Predicate definitions consist of clauses.

= An individual definition (whether it be a fact or rule).

e.g. mother(jane,alan). = Fact
parent(P1,P2):- mother(P1,P2). = Rule

• A clause consists of a head
• and sometimes a body.

– Facts don’t have a body because they are always
true.

head body

27/09/04 AIPP Lecture 2: Prolog Fundamentals 5

Arguments
• A predicate head consists of a predicate name and

sometimes some arguments contained within
brackets and separated by commas.

mother(jane,alan).

• A body can be made up of any number of subgoals
(calls to other predicates) and terms.

• Arguments also consist of terms, which can be:
– Constants e.g. jane,
– Variables e.g. Person1, or
– Compound terms (explained in later lectures).

Predicate name Arguments

27/09/04 AIPP Lecture 2: Prolog Fundamentals 6

Terms: Constants
Constants can either be:
• Numbers:

– integers are the usual form (e.g. 1, 0, -1, etc), but
– floating-point numbers can also be used (e.g. 3.0E7)

• Symbolic (non-numeric) constants:
– always start with a lower case alphabetic character and

contain any mixture of letters, digits, and underscores
(but no spaces, punctuation, or an initial capital).

• e.g. abc, big_long_constant, x4_3t).
• String constants:

– are anything between single quotes e.g. ‘Like this’.

27/09/04 AIPP Lecture 2: Prolog Fundamentals 7

Terms: Variables
• Variables always start with an upper case

alphabetic character or an underscore.
• Other than the first character they can be made up

of any mixture of letters, digits, and underscores.
e.g. X, ABC, _89two5, _very_long_variable

• There are no “types” for variables (or constants) – a
variable can take any value.

• All Prolog variables have a “local” scope:
– they only keep the same value within a clause; the same

variable used outside of a clause does not inherit the value
(this would be a “global” scope).

27/09/04 AIPP Lecture 2: Prolog Fundamentals 8

Naming tips
• Use real English when naming predicates,

constants, and variables.
e.g. “John wants to help Somebody.”
Could be: wants(john,to_help,Somebody).
Not: x87g(j,_789).

• Use a Verb Subject Object structure:
wants(john,to_help).

• BUT do not assume Prolog Understands the
meaning of your chosen names!
– You create meaning by specifying the body (i.e.

preconditions) of a clause.

27/09/04 AIPP Lecture 2: Prolog Fundamentals 9

Using predicate definitions
• Command line programming is tedious

e.g. | ?- write(‘What is your name?’), nl, read(X),
write(‘Hello ‘), write(X).

• We can define predicates to automate
commands:

greetings:-
write(‘What is your name?’),
nl,
read(X),
write(‘Hello ‘),
write(X).

| ?- greetings.
What is your name?
|: tim.
Hello tim
X = tim ?
yes

Prolog Code Terminal

27/09/04 AIPP Lecture 2: Prolog Fundamentals 10

Arity
• greetings is a predicate with no arguments.
• The number of arguments a predicate has is

called its arity.
– The arity of greetings is zero = greetings/0

• The behaviour of predicates can be made
more specific by including more arguments.
– greetings(hamish) = greetings/1

• The predicate can then behave differently
depending on the arguments passed to it.

27/09/04 AIPP Lecture 2: Prolog Fundamentals 11

Using multiple clauses
• Different clauses can be used to deal with

different arguments.
greet(hamish):-

write(‘How are you doin, pal?’).
greet(amelia):-

write(‘Awfully nice to see you!’).

= “Greet Hamish or Amelia” = a disjunction of goals.
| ?- greet(hamish). | ?- greet(amelia).
How are you doin, pal? Awfully nice to see you!
yes yes

• Clauses are tried in order from the top of the file.
• The first clause to match succeeds (= yes).

27/09/04 AIPP Lecture 2: Prolog Fundamentals 12

Variables in Questions
• We can call greet/1 with a variable in the question.
• A variable will match any head of greet/1.

| ?- greet(Anybody).
How are you doin, pal?
Anybody = hamish?
yes

• The question first matches the clause closest to the
top of the file.

• The variable is instantiated (i.e. bound) to the value
‘hamish’.

• As the variable was in the question it is passed back
to the terminal (Anybody = hamish?).

27/09/04 AIPP Lecture 2: Prolog Fundamentals 13

Re-trying Goals
• When a question is asked with a variable as an

argument (e.g. greet(Anybody).) we can ask the
Prolog interpreter for multiple answers using: ;

| ?- greet(Anybody).
How are you doin, pal?
Anybody = hamish? ; � “Redo that match.”
Anybody = amelia? ; � “Redo that match.”
no � “Fail as no more matches.”

• This fails the last clause used and searches down
the program for another that matches.

• RETURN = accept the match
• ; = reject that match

27/09/04 AIPP Lecture 2: Prolog Fundamentals 14

Variable clause head.
• If greet/1 is called with a constant other than
hamish or amelia it will fail (return no).

• We can create a default case that always succeeds by
writing a clause with a variable as the head argument.
greet(Anybody):-

write(‘Hullo ‘),
write(Anybody).

• Any call to greet/1 will unify (i.e. match)
greet(Anybody).

• Once the terms unify the variable is instantiated to the
value of the argument (e.g. bob).

|?- greet(bob).
Hullo bob.
yes

27/09/04 AIPP Lecture 2: Prolog Fundamentals 15

Ordering of clauses
• The order of multiple clauses is important.

greet(hamish):-
write('How are you doin, pal?').

greet(amelia):-
write('Awfully nice to see you!').

• The most specific clause should always be at the top.
• General clauses (containing variables) at the bottom.

| ?- greet(hamish).
Hullo hamish?
yes

greet(Anybody):-
write('Hullo '), write(Anybody).

27/09/04 AIPP Lecture 2: Prolog Fundamentals 16

Ordering of clauses
• The order of multiple clauses is important.

greet(hamish):-
write('How are you doin, pal?').

greet(amelia):-
write('Awfully nice to see you!').

• The most specific clause should always be at the top.
• General clauses (containing variables) at the bottom.

| ?- greet(hamish).
How are you doin,
pal?.
yes

greet(Anybody):-
write('Hullo '), write(Anybody).

27/09/04 AIPP Lecture 2: Prolog Fundamentals 17

Unification
• When two terms match we say that they unify.

– Their structures and arguments are compatible.
• This can be checked using =/2

|?- loves(john,X) = loves(Y,mary).
X = mary, � unification leads to instantiation
Y = john? �
yes Terms that unify Outcome

fred = fred. yes.
‘Hey you’ = ‘Hey you’. yes
fred=X. X=fred.
X=Y. Y = X.
foo(X) = foo(bar). X=bar.
foo(N,N) = foo(bar,X). N=bar, X=bar.
foo(foo(bar)) = foo(X) X = foo(bar)

Terms that don’t unify
fred = jim.
‘Hey you’ = ‘Hey me’.
frou(frou) = f(frou).
foo(bar) = foo(bar,bar).
foo(N,N) = foo(bar,rab).

27/09/04 AIPP Lecture 2: Prolog Fundamentals 18

Asking questions of the database
We can ask about facts directly:

|?- mother(X,alan).
X = jane?
Yes

Or we can define rules that prove
if a property or relationship holds
given the facts currently in the
database.

|?- parent(jane,X).
X = alan?
yes

mother(jane,alan).
father(john,alan).

parent(Mum,Child):-
mother(Mum,Child).

parent(Dad,Child):-
father(Dad,Child).

27/09/04 AIPP Lecture 2: Prolog Fundamentals 19

Summary
• A Prolog program consists of predicate definitions.
• A predicate denotes a property or relationship between objects.
• Definitions consist of clauses.
• A clause has a head and a body (Rule) or just a head (Fact).
• A head consists of a predicate name and arguments.
• A clause body consists of a conjunction of terms.
• Terms can be constants, variables, or compound terms.
• We can set our program goals by typing a command that unifies

with a clause head.
• A goal unifies with clause heads in order (top down).
• Unification leads to the instantiation of variables to values.
• If any variables in the initial goal become instantiated this is

reported back to the user.

